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Decision is a risk rooted in the courage of being free.

— Paul Tillich
Lectures:
Simulation and modeling of natural processes | 192891 ES Z1E |
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Chapter 1 Basic Simulation Modeling

Basic Simulation Modeling

show annotation

1.1 The Nature of Simulation

This is a book about techniques for
using computers to imitate, or simulate, the operations of various kinds of
real-world facilities or processes.
show annotation

analytic solu-tion

show annotation

BZHTfZ exact information on questions of interest

Application areas for simulation are
numerous and diverse
show annotation



https://www.bilibili.com/video/BV1RR4y1A7of/?spm_id_from=333.337.search-card.all.click&vd_source=ed04dacb9e3f8845a9f0fa7b8130e4f1

Designing and analyzing manufacturing systems (§li& ZZi09i%1T5 947)
Evaluating military weapons systems or their logistics requirements (ZF F
2 RS LK EEIREITE) ;

Determining hardware requirements or protocols for communications
networks ({5 M4 PR K TMNAIHTE) ;

Determining hardware and software requirements for a computer system
(T EN ARG B R KAVRAE) ;

Designing and operating transportation systems such as airports, freeways,
ports, and subways (IZHARZ (WHH. SERLE. EBO. HHE) gt
518E):

Evaluating designs for service organizations such as call centers, fast-food
restaurants, hospitals, and post offices (BRSZ4HZR (FNIEIYE L. REE. E
fe. HR/EE) AOIHEIRIT);

Reengineering of business processes (M RIZRIELR);

Analyzing supply chains (R 585 47);

Determining ordering policies for an inventory system (EZ R ST =R
IH7E);

Analyzing mining operations (SEH EMEI ) o

most real-world systems are too complex to
allow realistic models to be evaluated analytically, and these models must be
studied by means of simulation.
show annotation

careful simulation study could shed some light
on the question
show annotation

One indication of this is the Winter Simulation
Conference, which attracts 600 to 800 people every year.

show annotation




several impediments to even wider acceptance
and usefulness of simulation
show annotation

AT AR ARGRIRBEERIFEER
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1%, ZERIDAETRE

First, models used to study large-scale systems
tend to be very complex
show annotation

A second problem with simulation of complex
systems is that a large amount of computer time is some-times required.

show annotation

Finally, there appears to be an unfortunate
impression that simulation is just an exercise in computer programming,
albeit a complicated one
show annotation

Perspectives on the historical evolution of
simulation modeling may be found in Nance and Sargent (2002).

show annotation

All of the computer code shown in this chapter
can be downloaded from www.mhhe.com/law.

show annotation



http://www.mhhe.com/law

code url

#code

1.2 Systems, Models, and Simulation

BHAR: NSEEE—LEHNER LRENBANASR;
EZRG: NSRS ERAMECNRE,

We categorize systems to be of two types,
discrete and continuous.
show annotation

A discrete system is one for which the state
variables change instantaneously at separated points in time

show annotation

A continuous system is one for which the
state variables change continuously with respect to time.

show annotation
Ways to study a system.
show annotation
F L5 B BYSLES (Experiment with the Actual System
vs. Experiment with a Model of the System)
5 (Physical Model vs. Mathematical Model).

5 (Analytical Solution vs. Simulation).



classify simulation models along three different

dimensions:
show annotation

Classify simulation models along three different dimensions:

57 {5 E&B! (Static vs. Dynamic Simulation Models)
5 {HEEE! (Deterministic vs. Stochastic Simulation Models)
5 745 Ef&E! (Continuous vs. Discrete Simulation Models).

Stochastic simulation models produce
output that is itself random, and must therefore be treated as only an
estimate of the true characteristics of the model;

show annotation

1.3 Discrete Event Simulation

Discrete-event simulation concerns
the modeling of a system as it evolves over time by a representation in which
the state variables change instantaneously at separate points in time.

show annotation

We call the variable in a simulation model
that gives the current value of simulated time the simulation clock

show annotation
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two principal approaches have been suggested
for advancing the simulation clock: next-event time advance and fi xed-
increment time advance.
show annotation

the following components will be found in
most discrete-event simula-tion models
show annotation
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1.4 Simulation of a Single-server Queueing System



To measure the performance of this
system, we will look at estimates of three quantities.

show annotation

To measure the performance of the discrete simulation system:

. First, we will estimate the expected average delay
in queue of the n customers completing their delays during the simulation;
we denote this quantity by d(n).

the expected average number of customers in
the queue (but not being served), denoted by g(n).
: The expected utilization of the server is the expected
proportion of time during the simulation.

First, we will estimate the expected average
delay in queue of the n cus-tomers completing their delays during the
simulation; we denote this quantity by d(n).
show annotation

the expected average number of customers
in the queue (but not being served), denoted by q(n),

show annotation

The expected utilization of the server is the
expected pro-portion of time during the simulation [from time O to time T(n)]

show annotation

To recap, the three measures of performance
are the average delay in queue d”(n), the time-average number of customers
in queue q”~ (n), and the proportion of time the server is busy u” (n).

show annotation




Measurements

#Measurements
1.5 Simulation of An Inventory System

1.6 Parallel/Distributed Simulation and The High
Level Architecture

les62 basic simulation modeling logic is executed in order of the events’
simulated time of occurrence; i.e., the simu-lation is sequential. -urihermore,
all work is done o

show annotation

sequential. a. 1THY

1.7 Steps in a Sound Simulation Study

ter one 67 sequential process. As one proceeds with the study, it may be

necessary to go back to a previous step. 1. Formulate the problem and
show annotation




Formulate problem
and plan the study

l<

Collect data and
define a model

Assumptions
document

valid?

Yes

Construct a computer
program and verify

l

Make pilot runs

Programmed
model valid?

Design experiments

l

Make production




Analyze output
data

:

10 Document, present, FIGURE 1.46
and use results . : :
Steps in a simulation study.
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1.8 Advantages, Disadvantages and Pitfalls of
Simulation

Some possible advantages of simulation
that may account for its widespread appeal are the following.

show annotation

Most complex, real-world systems with
stochastic elements cannot be accurately described by a mathematical




model that can be evaluated analytically
show annotation

TER LT E

Simulation is not without its drawbacks.
Some disadvantages are as follows
show annotation

2.Chapter 2 Modeling Complex Systems

Most real-world systems, however, are
quite complex, and coding them without supporting software can be a diffi
cult and time-consuming task
show annotation

2.2 List Processing in Simulation

two approaches to storing lists of records in a
computer—sequential and linked allocation
show annotation

i8S (Sequential allocation)
PE\ 2 EL (Linked allocation)

3. Simulation Software

3.1 Introduction

several features needed in programming most
discrete-event simulation models, including:
show annotation




several features needed in programming most discrete-event simulation models,
including:

Generating random numbers, that is, observations from a U(0, 1)
probability distribution (F=4FEH1£L, BEMISMESF U(0,1) RINNIME);
Generating random variates from a specified probability distribution (e.g.,
exponential) (FE—MFEMRR D (B, ENDH) WENEE);
Advancing simulated time (3#{5 EATE]);

Determining the next event from the event list and passing control to the
appropriate block of code (MEHRFHTE F—FH, FBIEHINERLES
AIFIEBER) 5

Adding records to, or deleting records from a list (Al— "N RARIIC KT MER
FRRIERICR) ;

Collecting output statistics and reporting the results (&£ HSIHEEHAE
FRERIRE);

Detecting error conditions (3RMEIR & ERIKMHE).

Section 3.5 gives brief descriptions of Arena,
ExtendSim, and Simio, which are popular general-purpose simulation
packages
show annotation

3.3 Classification of Simulation Software

There are two main types of simulation
packages for discrete-event simulation, namely, general-purpose simulation
software and application-oriented simulation software.

show annotation

e used the event-scheduling approach to
discrete-event simulation modeling




show annotation

EHEE
4.Review of Basic Probability and Statistics

41 Introduction

The use of probability and statistics is such
an integral part of a simulation study
show annotation

In this chapter we establish statistical
notation used throughout the book and review some basic probability and
statistics particularly relevant to simulation.
show annotation

4.2 Random Variables and Their Properties

Sample space S: The set of all possible outcomes of an experiment
Random variable: a function (or rule) that assigns a real number (any
number greater than —oo and less than oo ) to each point in the sample
space S

In general, we denote random variables by capital letters such as
X,Y, Z and the values that random variables take on by lowercase
letters such as z, vy, z.

Distribution function (sometimes called the cumulative distribution
function) F(z).

Joint probability mass function p(z, y)

Joint probability density function (f(z, y)

(Marginal) Probability density function fx(x)



Mean or Expected value of X; is u; or E(Xj;)

Variance o7 or Var(X;)

A distribution function F(x) has the following
properties
show annotation

0< F(z) <1,Vzx
If r1 < Io, then F(iBl) < F(Jiz)
lim, ,,, F(z) =1and lim, ,o F(z) =0

p(x, y) is called the joint probability mass

function
show annotation
Joint probability density function
show annotation
2 (marginal) probability density functions of X and

Y
show annotation

fr@ = [ flaw)dy

)= [ s da

The mean or expected value of the random

variable Xi
show annotation

Then the following are important properties of means:

E(cX) = cE(X).



]E(znj c; X;) = znj c;E(X;) even if the X;'s are dependent (1HxA9).
=1 =1

hen the following are important properties
of means
show annotation

The variance of the random variable Xi will
be denoted by s2i or Var(Xi)
show annotation

The variance has the following properties:

show annotation

Properties of variance:

Var(X;) >0
Var(cX;) = c?Var(X;)

n

Var()_ X;) = > Var(X;) if the Xi's are independent (or uncorrelated, as
i=1 i=1

discussed below).

In particular, suppose that Xi has a normal distribution with mean u; and
standard deviation o;. In this case, for example, the probability that X is
between u; — 1.960; and u; + 1.960; is 0.95.

In particular, suppose that Xi has a normal dis-
tribution with mean mi and standard deviation si. In this case, for example,
the prob-ability that Xi is between mi 2 1.96si and mi 1 1.96si is 0.95

show annotation

he covariance between the random
variables Xi and Xj (wherei51,2,...,n;j512,...,n)

show annotation




Cij = E[(X; — i) (X — pj)] = E(Xi Xj) — pipy
: covariances are symmetric, that is, C;; = Cj;, and if ¢ = j, then

o= O — g2
Cz]_C]l_O-,L'.

If Cij = 0, the random variables Xi and Xj are

said to be uncorrelated.
show annotation

As a result, we use the correlation rij, defi ned b

show annotation

pij Or COI‘(Xi, Xj):
Cij

Pij =
2 2
0;0;

4.3 Simulation Output Data and Stochastic
Process

A stochastic process is a collection of
“similar” random variables ordered over time, which are all defi ned on a
common sample space. The set of all possible val-ues that these random
variables can take on is called the state space
show annotation

: BENLT A2 R IR B R B SRR "RELZ 20 LM, BN EEEEE XEHE
BARTE L, XERHZE R UERIFAE R RENSESIRANRTEE,

: For a single-server queueing system, e.g., M /M /1 queue, with IID
inter-arrival times A1, A,, - - -, lID service times S1, S», - - - and customers served
in a FIFO manner. & X 7EBAF AR AYZE IR AT (8] (delays in queue) Dy, Ds, - - - as
follows:



D=0
-Di—|—1 = maX{Di + Sz — Ai—|—1, O} fori = 1) 2’ e

: D; and D, are positively correlated.

% Q(t) WE t HREFIRRIEEL, W {Q(t), ¢ > 0} B—EsErjElham,
12, ERSZEW {0,1,2, -}

£ 0 NE I N BINEARA (ITH. SHEMBERANE) |, W),y
B EEEEBIITE, RS ERIERTE.

To draw inferences about an underlying
stochastic process from a set of simula-tion output data, one must
sometimes make assumptions about the stochastic proces

show annotation

. A discrete-time stochastic process X1, X2, . . .
is said to be covariance-stationary
show annotation

— & R F 2 RIRBENEEZ 175 Z 5T,

i =p fori=1,2,---and —oo < u < 00

0?2(72 fori=1,2,--- and 6% < 00

At, NF—NMhAEFERERE, WENASZZETMERETAmSH, BT
ME X, A Xy 2B A ZE(XEBURT IR j, MABURTSEFRATEME ¢ 804 + 5

o

For a covariance-stationary process,

show annotation




For a covariance-stationary process, we denote the covariance and correlation
between X; and X;,; by C; and p;, respectively, where

Ciivi C. C.
pi=—— = = forj=0,1,2,...

0_20_2 0’2 Co
1 1+]

4.4 Estimation of Means, Variances, and
Correlations

our primary objec-tive is to estimate m;

show annotation

For IID random variables

Sample mean

Sample variance

For



Sample variance

E[S2(n)] = 0? |1 -2

Variance of the sample mean

1423 (1- j/n)pj]

-1
Jj=1

Var[X(n)] = o° -

covariance-stationary stochastic process

show annotation

there are two sources of error: the bias in S
2(n) as an estimator of s2 and the negligence of the correlation terms

show annotation

4.5 Confidence Intervals and Hypothesis Tests for
the Mean

standard normal random variable;

show annotation

P(z) = — e dy —00 <2< 00

a particular n, coverage decreases as the
skewness of the distribution gets larger



show annotation

E[(X — p)?
V= [(0-2)3/; ] — o< r< o

5. Building Valid, Credible, and Appropriately
Detailed Simulation Models

5.1 Introduction and Definitions

One of the most diffi cult problems
facing a simulation analyst is that of trying to determine whether a simulation
model is an accurate representation of the actual system being studied, i.e.,
whether the model is valid
show annotation

We begin by defining the important terms
used in this chapter, including verifica-tion, validation, and credibility.

show annotation

Verification is concerned with determining whether the “assumptions
document”

Validation is the process of determining whether a simulation model is an
accurate representation of the system, for the particular objectives of the
study.

A simulation model and its results have credibility if the manager and other
key project personnel accept them as “correct.”



Validation Verification Validation Establish credibility

- - - - - - - - -

7 - o ~ ~ 7 - ~ ~ / - =~ ~ Vs - ~
L, Establish S S N S
/ ibili / / /
, credibility 4 'Y 'y Y
Results used
. . . “Correct” . ..
. | Assumptions . | Simulation o . | in decision-
System > > > results > -
Analysis document |programming| Program Make available Sell making
and data ks model runs results to process
1,2,3 5,6,7,8,9 management
10
FIGURE 5.1

Timing and relationships of validation, verification, and establishing credibility.

5.2 Guidelines for Determining the Level of Model
Detail

We now present some general
guidelines for determining the level of detail required by a simulation model

show annotation

REMBEREMEFMEERNRELE—AOEN:

INEE X ZRRRICIBAATI AR R T HER LR E

SRR MERREREA N SR DA T ZREIX N RSTER;

ERERAEL R (SME) I RBED KA BRERBIFMIZRE ;
ERYFERLHNERERENATE S,

FERBEPAEFE AR TN EBFADIMNESHT, BIREREDNIEIEIF
MIRIEE 2 FI{ERY;

RERVIFAIZE N 125 A R ERIERYE BUAE — 2K

EXMRIAMBHEMRS, HENEBAREHERMIFAEENETERNSR;
MREBMRNWERT S, WHER—"H"HEREHE T ETEELSRIRRE
RN T RAMEERTERRM,

5.3 Verification of Simulation Computer Programs

In this section we discuss eight
techniques that can be used to debug the computer program of a simulation



model/
show annotation

5.4 Techniques for Increasing Model Validity and
Credibility

Collect High-Quality Information and Data on
the System
show annotation

Collect High-Quality Information and Data on the System:

Conversations with subject-matter experts
Observations of the system

Existing theory

Relevant results from similar simulation studies

Experience and intuition of the modelers

Interact with the Manager on a Regular Basis

6. Selecting Input Probability Distributions

6.1 Introductions

To carry out a simulation using random
inputs such as interarrival times or demand sizes, we have to specify their
probability distributions.
show annotation

If it is possible to collect data on an input
random variable of interest, these data can be used in one of the following
approaches to specify a distributio
show annotation




MRFLEREIEROBNENTEIE, KEBEIATUTOEZ—, U
-5

EMEWERERSIRESS, I3, MRBBEARRSHE, BahEH
—BRERSHEMER —THEE, XERIUME

MEMAUERERESTREX —1MRID RN (seeing Sec 6.2), R
XEHFEARRSHE, SHERFERSHEN, FAIMMZDHHEE,
ERZITHENINE AN R "BE" — T EIED o, BIaNEEHsmEL
FRNDMm, ARTRIRNENRERNNTRE.

Two drawbacks of approach 1 are that the
simulation can only reproduce what has happened historically and that there
is seldom enough data to make all the de-sired simulation runs.

show annotation

6.2 Useful Probability Distributions

6.2.1 Parameterization of Continuous Distributions

However, if the parameters are defi ned
correctly, they can be classifi ed, on the basis of their physical or geometric
interpretation, as being one of three basic types: location, scale, or shape
parameters.
show annotation

AL S AR A =M E AR LR PRy —%:

Location parametere v : $IZE 7 o FBUESEEIRIIE AL AR (absciss, z H) (UE
R, BEEDHNEENPR (MESHHIIE L) HETIHSS

Scale parametere 8 : JRE 7 o CEEVERSNELES], R, WEE 0 2
WA IE S D TV EE B S 5K

Shape parameter o : JRE THEXDH—RRERRNNEARIR, o WEX—RK
ST MR (WRE) , BR2TUBHELLHSE, EZHULERAM



B, iE: BESfm (W =k ) RBRERSE, B0 (W
) AIAER M AZIRSEL,

6.2.2 Continuous Distributions

Table 6.3 gives information relevant to
simulation modeling applications for 13 con-tinuous distributions. Possible
applications are given fi rst to indicate some (certainly not all) uses of the
distribution

show annotation

13 MEED T

vi)

9505

Y881 % Exponential

M35 % Gamma

FH/RD % Weibull

IE&% % Normal

NENIEZS D% Lognormal
D&% Beta

B2 /R V B3 %5 Pearson type V
B2 /R VI #93%5 Pearson type VI
N EOZERTF o7 Log-logistic
29853 Sp % Johnson Sp
=% % Triangular

Uniform

6.2.3 Discrete Distribution

The descriptions of the six discrete
distributions in Table 6.4
show annotation

NTBEEO !

1A% %19 %m Bernoulli



B #1957 Discrete Uniform
— Iy %6 Binomial

JL{E 5% Geometric

1 Z 1% % negative binomial

JH¥AD e Poisson
6.2.4 Empirical Distribution

In some situations we might want to use the
observed data themselves to specify directly (in some sense) a distribution,
called an empirical distribution
show annotation

ERNNSERGEER (EREMEXT) EX—1T72%, XMALKES

For continuous random variables, the type of
empirical distribution that can be defi ned depends on whether we have the
actual values of the individual original observations X1, X2, . .., Xn rather
than only the number of Xi’s that fall into each of several specifi ed intervals.
(The latter case is called grouped data or data in the form of a histogram.)

show annotation

T EERENES, BEEXRNZR D HIRREKRETERMNESAETRTRIEWN
X1, Xy, -+, X, WEFRME, MARRE X, BEETMNENXENTER (EEWHRK

, WEMRA )
s is also the way we would like a con-tinuous
distribution
show annotation

The random values generated from this
distribution, however, will still be bounded both below (by a0) and above (by
ak);
show annotation




6.3 Techniques for Assessing Sample
Independence

RISOTIENRZSITAIEHE—TEENRIR, BMEWNE X1, X,, -, X, BF
PERDHAVMIIAY (SREEY) B, FIANSEALIAMETT (Seeing sec 6.5) Al
x* 1238 (Seeing 6.6.2) #RMRIR T I 1.

MRRTFTMITERIRIRANIL, BARESITHEBITFR TN,

If the assumption of independence is not
satisfi ed, then these statistical techniques may not be valid

show annotation

We now describe two graphical techniques
for informally assessing whether the data X1, X2, . . ., Xn (listed in time order
of collection) are independent.

show annotation

FREIHEESE X1, Xo, - - -, ERMIL (independent) BIFRFREIRZ 0

X R EME correlation plot, WMRHEAREXZRIN 5, 5 0 BRANHEER,
BAXE X; EEMIIBE IS

MMEHE X1, Xo, - - - KT (X, Xin1) RXTRIBURE scatter plot, MR X; &
MR, MERER (X, X, ) KNS E (X, X)) FENE—SRE., 2
F , IRSEN—KXERENEZ, SNEM B,

Htpy2E (BI% X; Mo mAMERIR) fitiinrsnis, AIMATFEXitals
Xla X27 ] Xn %é?ﬂl‘zo

B8R EtERIHEF RS (A a rank version of Von Neumann's ratio), —1°
BENREMEIZNI A ARIZRBIE BB M BIXNF i # 4, X = X;
) » WFEBERERIR, XTEXR—BRENHCH.



There are also several nonparametric (i.e., no
assumptions are made about the distributions of the X;’s) statistical tests
that can be used to test formally whether X, X,, - - -, X,, are independent.

show annotation

6.4 Activity 1: Hypothesizing Families of
Distributions

The fi rst step in selecting a particular
input distribution is to decide what general families

show annotation

BEEEERMADTNE —TMEBRREMLEXLER AR LS HBMN, MAZE
XEZFNEARSHE,
6

4.1 Summary Statistics

Useful summary statistics

TABLE 6.5
Useful summary statistics

Continuous (C)

Function Sample estimate (summary statistic) or discrete (D) Comments
Minimum, maximum Xy X C,D X1y Xl is a rough
estimate of the range
Mean p X(n) C,D Measure of central
tendency
X, if n is odd
Median x, 5 Xo5(n) = { i/ 1 " %S N C,D Alternative measure of
X2 T Xenl/2  ifniseven central tendency
Variance o §%(n) C,D Measure of variability
. - o’ ~ V'§*(n) .
Coefficient of variation, cv = &v(n) = — C Alternative measure of
K X(n) variability
L o’ $*(n) .
Lexis ratio, 7 = — F(n) == D Alternative measure of
u X(n) variability
(X, = X()P’/n
E[(X — p)’] ) 2 2
Skewness, v = —————— p(n) = C,D Measure of symmetry

(o)

(n=1)(n—2) [$*(m)]*"?

In particular, cv = 1 for the exponential distribution,

regardless of the scale parameter



show annotation

For a discrete distribution, the lexis ratio T
plays the same role that the coefficient of variation does for a continuous
distribution.
show annotation

The skewness v is a measure of the symmetry
of a distribution.

show annotation

6.4.2 Histograms

The quantile summary [see, for example,
Tukey (1970)] is a synopsis of the sample that is useful for determining
whether the underlying probability density function or probability mass
function is symmetric or skewed to the right or to the left

show annotation

6.5 Activity ll: Estimation of Parameters
Estimating the parameters from the data

we must somehow specify the values of their
parameters in order to have completely specifi ed distributions for possible
use in the simulation
show annotation

We shall consider explicitly only one type,
maximum-likelihood estimators (MLESs), for three reasons:

show annotation

We shall consider explicitly only one type, maximum-likelihood estimators
(MLEs), for three reasons:



MLEs have several desirable properties often not enjoyed by alternative
methods of estimation, e.g., least-squares estimators, unbiased estimators,
and the method of moments;

The use of MLEs turns out to be important in justifying the chi-square 2
goodness-of-fit test (see Sec. 6.6.2);

The central idea of maximum-likelihood estimation has a strong intuitive
appeal.

MLEs have several desirable statistical
properties, some of which are as follows
show annotation

MLE B —%REENSITER, 8

NTARZHERND, MLE 2lE—R; tiiEix, NFEMEEE 6 E,
L(0) #=IRATF L(6);

B MLE THETRE, —MRIERT, 0 HHSH (n — +oo) HIIEZT ¢
MLE EEAZTM (invariant) . MR FEDRE b, o = h(0), B84 ¢ BI MLE
R hb) (RRETERTM) ;

MLE 234 ES DY,

MLE 238—kita9, B) lim 6 =06, w.p.1

n—-+00

if the simulation appeared to be sensitive to
u, we might seek a better estimate of u;
show annotation

il

When we choose the distributions to use for
a simulation model, we generally don’t know with absolute certainty whether
these are the correct distributions to use, and this lack of complete
knowledge results in what we might call model uncertainty

show annotation




given that cer-tain input distributions have
been selected, we typically do not know with com-plete certainty what
parameters to use for these distributions, and we might call this parameter
uncertainty.
show annotation

There have been a number of methods
suggested for addressing the problem of input-model uncertainty, including
the following [see Barton (2012) and Henderson (2003)]

show annotation

There have been a number of methods suggested for addressing the problem of
input-model uncertainty, including the following [see Barton (2012) and
Henderson (2003)]:

NMHHTE BV E{E /5% (Bayesian model averaging) [Chick (2001), Zouaoui
and Wilson (2003, 2004)]

Delta /5% (Delta-method approaches) [Cheng and Holland (1997, 1998,
2004)]

TOIEBERBNIRY B %4 5 3% (Metamodel-assisted bootstrapping) [Barton et al.
(2013), Chapter 12]; see Cheng (2006) and Efron and Tibshirani (1993) for
a discussion of bootstrap resampling

IESERIB 2% (Nonparametic bootstrapping) [Barton and Schruben
(1993, 2001)]

E T BEN S AERRIIRE A% (Quick method based on a random-effects
model) [Ankenman and Nelson (2012)]

Unfortunately, most of these methods are
reasonably complicated and make assumptions that may not always be
satisfi ed in practice

show annotation

6.6 Activity lll: Determining How Representative
The Fitted Distributions Are



After determining one or more
probability distributions that might fi t our observed data in Activities | and I,
we must now closely examine these distributions to see how well they
represent the true underlying distribution for our data

show annotation

THEN B HHERE:

B& % (Heuristic procedures )
PEHRERIEMIE ( Goodness-of-fit hypothesis tests )

ATERATGE:

ZEEFH EFMMERLER
DRI EE]
BIZEE (quantile—quantile ( Q—-Q) plot. probability—probability (P-P) plot)

For discrete data, a frequency comparison is a
graphical comparison of a histo-gram of the data with the mass function p” (
x) of a fi tted distribution

show annotation
quantile—quantile ( Q—Q) plot
show annotation
probability—probability (P—P) plot
show annotation

6.6.2 Goodness-of-Fit Tests

A goodness-of-fit test is a statistical
hypothesis test (see Sec. 4.5) that is used to assess formally whether the
observations X, X», - - -, X,, are an independent sample from a particular




distribution with distribution function F.
show annotation

HEMRERRA A TR FTERRIR:

| REEFELE Hy AAREIRE" &R Ho HE"

First, failure to reject HO should not be interpreted
as “accepting HO as being true.”
show annotation

BRIl S M RERRTS A

x? M6

BURE XD R -HiK/RIg KRG
TER-IEMRLE

Nk Y NE £

Kolmogorov-Smirnov (K-S) tests for goodness of fi t,
on the other hand, compare an empirical distribution function with the
distribution function F” of the hypothesized distribution

show annotation

EMEMNNEBRN—H, X R TTUEMEHIERE RS IE S M EE R
ERERIHAITLERIERNINLE, EELEER TRA x* WIEH— P SEfREME, BN
AREXE., 5—FHH, IEMRENRIREXDT X-HK/RiEX (Kolmogorov-
Smirnor, K-S) ISR SRS RIRD HID TR F e, EWMHEA1E
B2EIN—F, K-SHERAFEUNMEAEANBESAH, ASEERAERER:
XLEEFRRT XXX PR e, K-SiiEs—NMIRME, BN T EEREERK
hn (EFRBEZHHEMNEALT) #M2 (%) B, mxERIAEinaEX E
W, &E, ERSANEDHNERT, K-SKIGEEILL x2 Wikss; S0, i,
Stephens (1974) .



Nevertheless, K-S tests do have some
drawbacks, at least at present. Most seri-ously, their range of applicability is
more limited than that for chi-square tests.

show annotation

6.10 Specifying Multivariate Distributions
Correlations, and Stochastic Processes
So far in this chapter we have

considered only the specifi cation and estimation of the distribution of a
single, univariate random variable at a time

show annotation

AEHRIALE, TENANRSRBENGEITRDT. BENZEEND . WRFER
REENMARZTERINEE, MENREIIEREZEHRERZ, Fa/ET
WMAEEMERZESTECNAIEMER T .

There are systems, however, in which the
input random variables are statisti-cally related to each other in some way:

show annotation

i, BERGNBMARBINZEEZ BMUEMAASITEX:

BEBMABNEZERELER—TENRE, BEEEMZx (EKE) #$iXo
h, EERIRERTE.

Some of the input random variables together form a random vector with
some multivariate (or joint) probability distribution (see Sec. 4.2) to be
specified by the modeler.

6.10.2 Specifying Arbitrary Marginal Distributions and
Correlations

In each of these cases, the fi tted member
of the multivariate distribution family involved (normal, lognormal, Johnson,



or Bézier) determined the correlation between pairs of the component
random variables in the vector, as well as their marginal distributions;

show annotation

We may want to allow for pos-sible correlation
between various pairs of input random variables to our simulation model,

show annotation

6.10.3 Specifying Stochastic Process

there are situations in which a sequence of
input random vari-ables on the same phenomenon are appropriately
modeled as being draws from the same (marginal) distribution, yet might
exhibit some autocorrelation between themselves within the sequence

show annotation

FiabENEE:

AR #1 ARMA 372
S iE

ARTA 372
VARTA 372

Standard autoregressive (AR) or
autoregressive moving-average (ARMA) models,
show annotation

6.11 Selecting a Distribution in the Absence of Data

In some simulation studies it may not
be possible to collect data on the random variables of interest, so the
techniques of Secs. 6.4 through 6.6 are not applicable to the problem of

selecting corresponding probability distributions.



show annotation

6.12 Models of Arrival Processes

We call the stochastic process {N(t), t $ 0} an
arrival process since,
show annotation

Arrival process

L N(t) = max{i: t; <t} It ZBELAFTLLERIFHETT 2L, TRV FE
{N(t),t >0} AFRAIFE, BF A =t,—t;, 1 (i=1,2,---) BFi—-171
I @ TE Z EIFIZEA E]FFAT1E]

6.12.1 Poisson Processes

defi ne a Poisson process, state some of its
important properties
show annotation

REBREE—T;

N(t+s)— N(t) (FERSBIX 8] (¢, T + s] LRIIRAIDER) JHIZF
{N(u),0 <u<t};

NFFRE t,s >0, 2% N(t+s) — N(t) JHILTF ¢,

the number of arrivals in the interval (t, t 1
s] is independent of the number of arrivals in the earlier time interval [0, t]
and also of the times at which these arrivals occur

show annotation

The following theorem,




| show annotation

DR {N(t),t > 0} B—THNTIRE, BLAEKERN s (ERREXE LRA
HEEZZEN As (A AIELE) BIBMRETZEE. Bl

e—/\s()\s)k

PIN(t+3) ~ N(t) = k] = —

k=0,1,---,and t,s > 0

Eit, E[N(s)] = As (See Sec 6.2.3), H, E[N(1)] = X, Eit X\ 2KEHR 18F
EXEREARVRENE, M2 AIEEREE,

(AR {N(2),t > 0} BIEERAN A WHNERE, BBAEXNNAYEABIFRATE
Ay, Ay, - R ID IBEBENIZE, 1IEN 1/

6.12.2 Nonstationary Poisson Processes
AT REERNAEENZERAERERENEAIIZIRE,
BENLEFE {N(t), ¢t > 0} B—TIFFERIBIAEE, WR:

MESREA—T;
N(t+s)— N(t) MIZTF {N(u),0 <u <0}

L A(t) =E[N@)], NFAEt >0, WRXNFHEN ¢t B At) A (differentiable)
, Bl RN

d
A(t) = —A(®)
BHWXRE, FEEIANHIEHEARNXE () BREKR, D5FR A®) F1 A(¢) PIEF

SHELVAURE:) # o

We call L(t) and I(t) the expectation function
and the rate function, re-spectively, for the nonstationary Poisson process.

show annotation

AR {N(t),t > 0} NEBELERVEREREN A(t) FIFFIENTE, BA:



e—b(t,s) [b(t, s)]k

P[N(t +s) — N(t) = k] = =

fork=0,1,2,... andt,s >0

Or o

Leh, b(t,s) = A(t+s) — A(t) = [[7° MNy)dy, T [t,t + s] LEAEEERSH
, WRA(A@R))/dtE [t,t+ s] ERBARNVBNR d(A(t))/ dt FEHELE, B4
XE_/I\%EUE‘ZTLO

~,

\}

-

Il

THEOREMG.3.If{N(t), t$0}isa

nonstationary Poisson process with continuous expectation function L(t),
then

show annotation

it does require somewhat arbitrary judgment
about the boundaries and widths of the constant-rate time intervals

show annotation

6.12.3 Batch Arrivals

For some real-world systems, customers arrive
in batches, or groups, so that property 1 of the Poisson process and of the
nonstationary Poisson process is violated
show annotation

Let N(t) now be the number of batches of
individual customers that have arrived by time t

show annotation

If X(t) is the total number of individual customers
to arrive by time t, and if B; is the number of customers in the ith batch,

show annotation

6.13 Assessing the Homogeneity of Different Data
Sets



BRDMART—THENILRMIIRET £ BWNE, BENEXEHRESRE
ERMTEES FF.

17

Sometimes an analyst collects k
sets of observations on a random phenomenon in-dependently and would
like to know whether these data sets are homogeneous and thus can be
merged
show annotation

AHITIeRERYENTRE - TRK/RET (Kruskal-Wallis) Rig#46., BTFXIEHENS T
MR, XIS,

we discuss the Kruskal-Wallis hypothe-sis test
for homogeneity.
show annotation

7. Random-Number Generators

7.1 Introduction

A simulation of any system or process in
which there are inherently random components requires a method of
generating or obtaining numbers that are random, in some sense.

show annotation

So as to avoid speaking of “generating
random variables,” which would not be strictly correct since a random
variable is defined in mathematical probability theory as a function satisfying
certain conditions, we will adopt more precise terminology and speak of
“generating random variates.”
show annotation




AERHNTITIEH [0,1] KB LRSS 5 = LR ERI G A,

This entire chapter is devoted to methods
of generating random variates from the uniform distribution on the interval

[0, 1];
show annotation

This prominent role of the U(0, 1)
distribution stems from the fact that random vari-ates from all other
distributions (normal, gamma, binomial, etc.) and realizations of various
random processes (e.g., a honstationary Poisson process) can be obtained
by transforming IID random numbers in a way determined by the desired
distribution or process.
show annotation

One possibility would be to hook up an
electronic random-number machine, such as ERNIE, directly to the
computer. This has several disadvantages, chiefl y that we could not
reproduce a previously generated random-number stream exactly.

show annotation

Intuitively the midsquare method seems
to provide a good scrambling of one number to obtain the next, and so we
might think that such a haphazard rule would provide a fairly good way of
generating random numbers
show annotation

In fact, it does not work very well at all.
One serious problem (among others) is that it has a strong tendency to
degenerate fairly rapidly to zero, where it will stay forever.



show annotation

A more fundamental objection to the
midsquare method is that it is not “random” at all, in the sense of being
unpredictable.
show annotation

Sometimes arithmetic generators are called
pseudorandom, an awkward term that we avoid, even though it is probably
more accurate.
show annotation

who developed what is probably still the most
widely used class of techniques for random-number

show annotation

if designed carefully, can produce numbers
that appear to be independent draws from the U(Q, 1) distribution, in that
they pass a series of statistical tests
show annotation

A “good” arithmetic random-number
generator should possess several properties:

show annotation

— NI BHEN SR ERNSEEUATEMS:

FRFANMENEEMEE (0,1] XE L2990 HHN, HEHEZEARNF
FERXME, BMMFENERESTETN

MEIENAEFRR, BRNFELRLEREEERER, FEFAFSEINNGEMREST

8] ;

BATERET MM EE A — A ENRENECR, BRZEDEZ, 1) XBERTA
BEFESIARSREITENERES S 2) BRiITEEEFEA—ARHENBE



HHEARNR G ARSI E NBRRILER;

REBRNIEERZTRED FFRIBENEUR;

BAIRERESRZEHERN, BINAEIRENmIZFEITENIGE, HEERN
BEHLEFS

The ability to create separate streams for a
generator is facilitated if there is an effi cient way to jump from the ith
random number to the (i 1 k)th random number for large values of k.

show annotation

Furthermore, most generators now have the
facility for multiple streams in some way, especially those generators
included in modern simulation packages, satisfying point 4

show annotation

Unfortunately, there are also some generators
that fail to satisfy the uniformity and independence criteria of point 1 above,
which are absolutely necessary if one hopes to obtain correct simulation
results.
show annotation

IFZREBNBEL T IEFIEILIEEN, RANIBIZEFZIEMHERIFELER, T
XN,

7.2 Linear Congruential Generators

Many random-number generators
in use today are linear congruential generators (LCGs), introduced by Lehmer
(1951).
show annotation

GtARLERS



B Z1,Zy,--- BYIRTENZERALXENX:
Z;=(aZ;.1+c¢) (3 mBEUR)

Hep, m RiR REX ( ), a KRR _F , ¢ RiIRIEE , A
N Zy RisMFE4ia{E MEBIENEY., HB, 0<m,a<m,c<m,Zy<m

Immediately, two objections could be raised
against LCGs.
show annotation

HMRIRALES LC6 MR TIRS:

B (fh) BENEURESRHERRE@, Bl ERARNEXN Z; REAFEEIEN
BEATLEL

U; WBVERERBEIE0,1/m,2/m,---,(m —1)/m, FEXLE, U; LfrRE
MEARN—E D, KT m,a,c, Z) ZIERINE, UK m ZFRBREVIER,

The length of a cycle is called the period of a
generator. For LCGs, Zi depends only on the previous integer Z;,, and since
0 < Z; <m —1, itis clear that the period is at most m; if it is in fact m, the
LCG is said to have full period.
show annotation

#full-period

Since large-scale simulation projects can use
millions of random numbers, it is manifestly desirable to have LCGs with long
periods.
show annotation

since we are assured that every integer between
0 and m 2 1 will occur exactly once in each cycle, which should contribute to



the unifor-mity of the Ui’s.
show annotation

RARMRAZGEDEAEER/LEA TN, EAFEREFKERN LC6,
#H—F, RIFE , ERABNMERLEEZSTREIAF 0 ~ m—1 ZEHNETE
i EM—R, XEHT U, 999 (BE, EMERHRER L6, &R—
MERVERK R, WAIREEMHIFISNHE,

FTA, TREAMENERESE m. ofll ¢, {ESHENEN LC6 BERBRAMERAN. TH
FUEBLS W T XMAFILIER .

B LC6 RIENXRY LC6 BAZAEM, SAMNI FII=1TFKMAMIL:

m M c BEBREIINRERNERHRE 1, Blm 5 cHA;
WR ¢ NERE m NEE (REEWR 1 FIEBSERR) , N q BEEfR a—1;
MR 4 BfEm, N 4EfFRa—1,

71505 (a) BERRA"'MScER, "
HE®EH (HEZOEKEH) REFHICC BI—TATREAEIM
PIEHAY, FEFRIZIHER

he following theorem, proved by Hull and Dobell
(1962), gives such a characterization
show annotation

we also want good statistical properties (such
as apparent independence), computational and storage effi ciency,
reproducibility, facilities for separate streams, and portability (see Sec. 7.2.2).

show annotation




FELEREEFRIFE, BAMEc>0 (FRIRES LC6) Sc=0 (FrIk
LCG) BB ARERIRIL,

7.2.1 Mixed Generators

most computers and compilers have 32-
bit words, the leftmost bit being a sign bit, so b 5 31and m 5 231. 2.1 billion

show annotation

choosing m 5 2b does allow us to avoid explicit
division by m on most computers by taking advantage of integer overfl ow

show annotation

7.2.2 Multiplicative generators
HIERER  #FELCG

Multiplicative LCGs are advantageous in that
the addition of c is not needed, but they cannot have full period since
condition (a) of Theorem 7.1 cannot be satisfied

show annotation

however, it is possible to obtain period m — 1 if
m and a are chosen carefully
show annotation

As with mixed generators, it's still
computationally efficient to choose m = 2° and thus avoid explicit division

show annotation

5RERERH, Bm=2", HERXRMHASEBEEXRE, EREXMIE
T, HAMRZHN 22, iR, Z; FsEBSHEN TN UNA 0~ m — 1 Z[8



PIERH TN D 22—,

In fact, the period is 2*{b-2} if Z_0 is odd and a
is of the form 8k + 3 or 8k + 5 for some k = 0,1, - - -

show annotation

he generator usually known as RANDU is of this
form (m = 23!, a = 2'% + 3 = 65539, c = 0) and has been shown to have very
undesirable statistical properties (see Sec. 7.4).
show annotation

LIRIENAY A A SR RANDU Fi2XFEAIALR, BN
m =23, a =20 13 =65539,c =0, MEBXRIIHA, XTKEREER

o

Because of these difficulties associated with
choosing m = 2° in multiplicative LCGs, attention was paid to finding other
ways of specifying m.
show annotation

HF7ES LC6 % m = 2° FRAXLERME, AMTEIENRESHEM S LR
EmE., TS m=2° MENm BT 2" WRAZE, FlW, 7£b =31 13
fe, IVF 23 RAZHIEEDT ZEE 231—1 = 2147483647, TI7E, WFHEHm,
ABAIERR, W o HE m B9 (primitive element modulo), MEERN m—1,
BME o' — 1 BB m BIRNR/NEHZ I =m -1,

NFAXF A RIEFEN m M o, BINVERIEBTERL, 2,---, m - 1ESTETAR
FFEM—R, AL Zy fIAR 1 ~ m—1 NEEEE, BRINAENE m -1, X
R ( prime modulus multiplicative LCGs, PMMLCGs).,

These are called prime modulus multiplicative
LCGs (PMMLCGs)
show annotation




Two issues immediately arise concerning

PMMLCGs:
show annotation

5 PMMLCGs 1EKXAYFa)RBERN =4 :
IR EIE m BZRIT? FRIIE TEM DT Z(ERRY PMMLCE EANR LR

RIX—
HFARiEm =20, BEAREEEIEER NUEISEIAZIER m RERERIER
R. XMERLT, BREARENAERER —EHE, 7 (

simulated division),

Considerable work has been directed toward

identifying good multipliers a for PMMLCGs t
show annotation

show annotation

NFEH m*, ELEE ZERN o WA MIERIEN a; = 7° = 16807
as = 630,360,016, XFTHEEE m* HETT.

The multiplier al was originally suggested by Lewis,
Goodman, and Miller (1969), and it was used by Schrage (1979) in a clever
FORTRAN implementation using simulated division. The importance of
Schrage’s code was that it provided at that time a reasonably good and
portable random-number generator.



show annotation

FTF a1 R ELZE—TE50509 FORTRAN LHIH(EF T a1, BRBEELE
F, M SHRREE S THSFIAE T IERRETI & £ 55

However, many experts [see, e.q., L'Ecuyer, Simard,
Chen, and Kelton (2002) and Gentle (2010, p. 21)] recommend that LCGs
with a modulus of around 231 should no longer be used as the random-
number generator in a general-purpose software package

show annotation

Not only can the period of the generator be
exhausted in a few minutes on many computers, but, more importantly, the
relatively poor statistical properties of these generators can bias simulation
results for sample sizes that are much smaller than the period of the
generator
show annotation

AEWENBAMRRE EHRIRENER E2R:

— T EAHNENSERZSIUTEN LEEE/ LD TAMERR;
LR HANBRENFITERESHREERFEFIKE, FERLERE
HZE/VRZ,

7.3 Other Kinds of Generators

Although LCGs are probably the
most widely used and best understood kind of random-number generator,
there are many alternative types.

show annotation

FREER g EHRNEEANRER I ERIVARNEIFNSITEE.

7.3.1 More General Congruences



LCGs can be thought of as a special case of generators defined by:
Zi = 9(Zi—1,Zi—2,- - -)(mod m)
where g is a fixed deterministic function of previous Z;'s.

PRI

—RER A 2ZE (quadratic congruential generator)
ZEBJALEZE (multiple recursive generator, MRG)

One obvious generalization of LCGs would be to
let g(Zi21, Zi22, . ..) 5a92Z2i211aZi21 1 c, which produces a quadratic
congruential generator
show annotation

A different choice of the function g is to
maintain linearity but to use earlier Zj's; this gives rise to generators called
multiple recursive generators (MRGs)

show annotation

7.3.2 Composite Generators

Several researchers have developed
methods that take two or more separate genera-tors and combine them in
some way to generate the fi nal random numbers.

show annotation

PRSI BIRA R ERUEM A NS SRR E R RLIIBENTLEL
B2 XMASRESRZERNENE AR MR ERFREERNAER, BFsitiE
HEo IR T RIRER—TRERS.

The disadvantage in using a composite
generator is, of course, that the cost of obtaining each U, is more than that of
using one of the simple generators alone.
show annotation




Wichmann and Hill (1982) proposed the
following idea for combining three generators, again striving for long period,
portability, speed, and usability on small computers

show annotation

7,3,3 Feedback Shift Register Generators
M BB 1722 (Linear feedback shift register, LFSR)

The original motivation for suggesting that
the bi’s be used as a source of U(O, 1) random numbers came from the
observation that the recurrence given by Eq. (7.4) can be implemented on a
binary computer using a switching circuit called a linear feedback shift
register (LFSR)
show annotation

Unfortunately, LFSR generators are known to
have statistical defi ciencies,

show annotation
1t5E
(Generalized feedback shift register, GFSR)
(twisted generalized feedback shift register,
TGFSR)

With suitable choices for r, g, and A, a TGFSR
generator can have a maximum period of 2¢ — 1 as compared with 29 — 1 for
a GFSR generator (both require ql bits to store the state of the generator).

show annotation

7.4 Testing Random Number Generators



As we have seen in Secs. 7.1
through 7.3, all random-number generators currently used in computer
simulation are actually completely deterministic. Thus, we can only hope that
the U;’s generated appear as if they were IID U(0,1) random variates

show annotation

Before such a generator is actually used in a
simulation, we strongly recommend that one identify exactly what kind of
generator it is and what its nu-merical parameters are.

show annotation

7.41Empirical Tests

Perhaps the most direct way to test a generator
Is to use it to generate some U/s, which are then examined statistically to see
how closely they resemble IID U (0, 1) random variates

show annotation

RIS OMLIARINTTE, FUTOERNEEM U(0,1) BNANZEZEREE,

FIESREMM x* WIATRIBR

EELS, SChr ERHE X2 W B4,

e (S ETHERE) AR, BEXMIIMRIRNEERNE (Xfrk, ERNR
JRarE, BMERRIR AR SE)

RAEZRNGEHNTEN U, @SFEAIPRINEXE: IFEDNL Rt
BHER j=1,2,--- WiHfE j WEXRERIEIT,

Why should we care about this kind of
uniformity in higher dimensions? If the individual U;’s are correlated, the
distribution of the d-vectors U; will deviate from d-dimensional uniformity;
thus, the serial test provides an indirect check on the assumption that the



individual U;’s are independent.
show annotation

The third empirical test we consider, the runs (or
runs-up) test, is a more di-rect test of the independence assumption.

show annotation

As mentioned above, these are just four of
the many possible empirical tests. For example, the Kolmogorov-Smirnov test
discussed in Sec. 6.6.2
show annotation

RANDU is a fatally fl awed generator, due primarily
to its utter failure in three dimensions;
show annotation

One potential disadvantage of empirical tests
is that they are only local; i.e., only that segment of a cycle (for LCGs, for
example) that was actually used to generate the Ui’s for the test is examined,
S0 we cannot say anything about how the generator might perform in other
segments of the cycle.
show annotation

F S EREERR, MR, N EHFP—ER#TT 7R,
X—ERSLPR ER AT RN Ui,

7.4.2 Theoretical Tests

We now discuss theoretical tests for random-
number generators. Since these tests are quite sophisticated and
mathematically complex, we shall describe them somewhat qualitatively;

show annotation




as mentioned earlier, theoretical tests do not
re-quire that we generate any U;’s at all but are a priori in that they indicate
how well a generator can perform by looking at its structure and defining
constant
show annotation

Theoretical tests also differ from empirical
tests in that they are global; i.e., a genera-tor’s behavior over its entire cycle
Is examined.
show annotation

global tests have a natural appeal but do not
generally indicate how well a specifi c segment of a cycle will behave

show annotation

7.4.3 Some General Observations on Testing

One piece of advice that is often offered, however, is
that a random-number generator should be tested in a way that is consistent
with its intended use.
show annotation

8. Generating Random Variables

8.1 Introduction

A simulation that has any random
aspects at all must involve sampling, or generat-ing, random variates from
probability distributions.
show annotation

These distri-butions are often specifi ed as a
result of fi tting some appropriate distributional form, e.g., exponential,
gamma, or Poisson, to observed data, as discussed in Chap. 6




show annotation

we address the issue of how we can gen-
erate random variates with this distribution in order to run the simulation
model.
show annotation

the basic ingredient needed for every method
of generating random variates from any distribution or random process is a
source of IID U(0, 1) random variates
show annotation

Without an ac-ceptable random-number
generator, it is impossible to generate random variates correctly from any
distribution
show annotation

several factors should be considered when
choosing which algorithm to use in a particular simulation study. Unfortu-
nately, these different factors often confl ict with each other, so the analyst’s
Jjudg-ment of which algorithm to use must involve a number of tradeoffs

show annotation

ERTABEREREINREE, NiZZRSHRAR:

S
ek
B
R



The first issue is exactness. We feel that, if
possible, one should use an algo-rithm that results in random variates with
exactly the desired distribution, within the unavoidable external limitations of
machine accuracy and exactness of the U(0Q, 1) random-number generator

show annotation

Given that we have a choice, then, of
alternative exact algorithms, we would clearly like to use one that is effi cient,
in terms of both storage space and execution time.

show annotation

A somewhat subjective issue in choosing
an algorithm is its overall complexity, including conceptual as well as
implementational factors.
show annotation

Finally, there are a few issues of a more
technical nature. Some algorithms rely on a source of random variates from
distributions other than U(O, 1), which is unde-sirable, other things being
equal.
show annotation

used variance-reduction techniques
(common random numbers and antithetic vari-ates) require synchronization
of the basic U(O, 1) input random variates used in the simulation of the
system(s) under study, and this synchronization is more easily accomplished
for certain types of random-variate generation algorithms

show annotation

generat-ing correlated random variates and
generating realizations of both stationary and non-stationary arrival
processes
show annotation




8.2 General Approaches to Generating Random
Variates

There are many techniques for
generating random variates, and the particular algorithm used must, of
course, depend on the distribution from which we wish to generate; however,
nearly all these techniques can be classifi ed according to their theoretical
basis
show annotation

8.2.1 Inverse Transform

Then an algorithm for generating a random
variate X having distribution function F'is as follows (recall that, ~ is read “is
distributed as”):
show annotation

BEEFE—ELEMIETE X (See Sec 4.2), X BRI F, &
0< Flz) < 1 I, FEEE0EFHEEY CXERENR o, < o, B
0< F(z1) < F(z2) <1, MZEXE F(z) < F(z3)) &

L F T RRREF ¥, WEREES MR FHOBENEE X NEENT:

F=EU~U(0,1)
RE X = F~1(U)

(General inverse-transform method)

To show that the value X returned by the
above algorithm, called the general inverse-transform method,

show annotation




EXAMPLE 8.1. Let X have the exponential distribution with mean S (see Sec. 6.2.2).
The distribution function is

1—e*F  ifx=0
F(x) = :
0 otherwise
so to find F~!, we set u = F(x) and solve for x to obtain
Flw)y=-BIn( — u)

Thus, to generate the desired random variate, we first generate a U ~ U(0, 1) and then
let X = —BIn U. [It is possible in this case to use U instead of 1 — U, since 1 — U and
U have the same U(0, 1) distribution. This saves a subtraction. ]

& X BAYEN NS T, EOTREEN:

_ e /B
Fz) = {1 e ifz>0
0 otherwise
MAREER F, & u=F(z) HKEz, UEE:
z=F1'(u) = —BIn(l — u)

B, BERMMEXRNBIESE, BRER—TU~U(0,1), MEL X = —FInU

o

The inverse-transform method’s validity
in the continuous case was demon-strated mathematically above, but there
is also a strong intuitive appeal
show annotation

The inverse-transform method can also be
used when X is discrete.
show annotation

Generalization, Advantages, and
Disadvantages of the Inverse-Transform Method

show annotation




Let us now consider some general advantages
and disadvantages of the inverse-transform method in both the continuous
and discrete cases.

show annotation

R ZHGERY

EEZIFTR TN ARXMA AT ENREERETE F1(U), BTFTERAE
EABHMAEKRNS R F IR (MESSHAMSo%) , BHibErE
BRI R BHGEN—EATS

NTREDT, RERENFAZENBNFETNZENRIRES A,

ST ERAZERBA, KBTI HBNEZERRIEXME, WAHEEAE
BT E% (antithetic variates)

ST MNBlr D R EHNEE.

Despite these possible drawbacks, there are
some important advantages in using the inverse-transform method.

show annotation

show annotation

8.2.2 Composition

The composition technique applies when
the distribution function F from which we wish to generate can be expressed
as a convex combination of other distribution functions Fi, F», - - -. We would
hope to be able to sample from the F;’s more easily than from the original F

show annotation




8.2.3 Convolution

For several important distributions, the
desired random variable X can be expressed as a sum of other random
variables that are IID and can be generated more readily than direct
generation of X.
show annotation

X is called the m-fold convolution of the
distribution of a Y.

show annotation

M REMNEE X AIIART N ERENZ S/
P RIR X BY A AR EAM 10 R ERY

Convolution is really an example of a more
general idea, that of transforming some intermediate random variates into a
fi nal variate that has the desired distribu-tion;

show annotation

8.2.4 Acceptance-Rejection

RIE=MAE (REWE. BEENERE) REERAE, BERENFIERR
DHAMENEE, MART RIIBRZ RO A

HINEMTIIE:
S 7
SEED7

The principle of acceptance-rejection is quite
general, and looking at the above algorithm in a slightly different way clarifi




es how it can be extended to generation
show annotation

8.3 Generating Continuous Random Variates

In this section we discuss
particular algorithms for generating random variates from several commonly
occurring continuous distributions;
show annotation

n deciding which algorithm to present, we have
tried to choose those that are simple to describe and implement, and are
reasonably effi cient as well. We also give only exact (up to machine
accuracy) methods, as opposed to approximations

show annotation

Uniform 355 %

8.3.1 Uniform
show annotation

Exponential

8.3.2 Exponential

show annotation

m-Erlang

8.3.3 m -Erlang

show annotation

Fortunately, the m-Erlang dis-tribution is a
special case of the gamma distribution (with shape parameter a equal to the

integer m), so that we can use one of the methods for generating gamma



ran-dom variates here as well (see Sec. 8.3.4 for discussion of gamma
generation).
show annotation

Gamma

8.3.4 Gamma

show annotation

Weibull

8.3.5 Weibull
show annotation

Normal

8.3.6 Normal
show annotation

It does have the advantage, however, of
maintaining a one-to-one correspondence between the random numbers
used and the N(O, 1) random vari-ates produced

show annotation

there is a serious diffi culty if U1 and U, are
actually adjacent random numbers produced by a linear congruential
generator (see Sec. 7.2),
show annotation

WATRIE

An improvement to the Box and Muller
method, which eliminates the trigono-metric calculations and was described
in Marsaglia and Bray (1964), has become known as the polar method




show annotation

Lognormal
8.3.7 Lognormal
show annotation
Beta
8.3.8 Beta
show annotation

8.4 Generating Discrete Random Variates

discusses particular algorithms for
generating random variates from various discrete distributions that might be
useful in a simulation study
show annotation

The discrete inverse-transform method, as
described in Sec. 8.2.1, can be used for any discrete distribution, whether the
range of possible values is fi nite or (count-ably) infi nite

show annotation

One other general approach should be
mentioned here, which can be used for generating any discrete random
variate having a fi nite range of values. This is the alias method,

show annotation

Bernoulli



Discrete Uniform

Arbitrary Discrete Distribution
Binomial

Geometric

Negative Binomial

Poisson

Although the alias method is limited to discrete
random variables with a fi nite range, it can be used indirectly for discrete
distributions with an infi nite range, such as the geometric, negative binomial,
or Poisson
show annotation

8.5 Generating Random Vectors, Correlated
Random Variates, and Stochastic Processes

So far in this chapter we have really
considered generation of only a single random variate at a time from various
univariate distributions

show annotation
AEZIHBINIE, ZREENREMNST DHPRERTEENENEE, T

PR ER A B S N R X EE 75 AR — M R FRESK BV 0 fn 7= AE — SR IR [E) 0 T RO BEAL

=8
Using Conditional Distributions

As general as this approach may be, its
practical utility is probably quite limited.
show annotation

Multivariate Normal and Multivariate Lognormal

Since X is symmetric and positive definite, we
can factor it uniquely as ¥ = CCT (called the Cholesky decomposition),



where the d x d matrix C is lower triangular
show annotation

Note that u and X are not the mean vector and

covariance matrix of the desired multivariate lognormal random vector X,
but rather are the mean and covariance matrix of the corresponding
multivariate normal random vectorY.

show annotation

Correlated Gamma Random Variates

we cannot write the entire joint
distribution but only specify the marginal distributions (gamma) and the
correlations between the com-ponent random variables of the X vector.

show annotation

Generating from Multivariate Families
Generating Random Vectors with Arbitrarily Specified Marginal
Distributions and Correlations

we noted the need to model some input
random variables as a random vector with fairly arbitrary marginal

distributions and correlation structure, rather than specifying and controlling

their entire joint distribution as a member of some multivariate parametric
family like normal, lognormal, Johnson, or Bézier

show annotation

The only constraint is that the correlation
structure between them be inter-nally consistent with the form and

parameters of the marginal distributions, as dis-cussed by Whitt (1976), i.e.,

that the correlation structure specifi ed be feasible

show annotation




They present specifi c examples through
dimension d 5 3 when the marginal distributions are uniform, exponential,
and discrete uniform

show annotation

Generating Stochastic Processes

some applications require that we generate
observa-tions of the “same” random variable as it is observed through time.

show annotation

w N REAE 2RO
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8.6 Generating Arrival Processes

NEEYNUEE:

IEFRANS T
O. Output Data Analysis for a Single System

9.1 Introduction

As a matter of fact, a common mode of
operation is to make a single simulation run of somewhat arbitrary length and
then to treat the resulting simulation estimates as the “true” model
characteristics.
show annotation




9.2 Transient and Steady-state Behavior of a
Stochastic Process

For fixed y and I, the probabilities
Fi(y|I), F>(y|I), - - - are just a sequence of numbers. If F;(y|I) as i — oo for all
y and for any initial conditions I, then F(y) is called the steady-state
distribution of the output process Y1,Ys, - - -,
show annotation

REHALACEBEREE S ENHERBINEE Yii1, Yiio, - - - #EVERERY

85, MEEKREENH BEHERND . #H—F, XLEFEINREZEHM
3, BiEi—" RIBENTEE

9.3 Types of Simulations with Regard to Output Analysis

The options available in designing
and analyzing simulation experiments depend on the type of simulation at
hand, as depicted in Fig. 9.4
show annotation

KIFBRFR

The event E often occurs at a time point when
the system is “cleaned out” (see Example 9.4), at a time point beyond which
no useful information is obtained (see Example 9.5), or at a time point specifi
ed by management mandate
show annotation

FFRIERMFE

A nonterminating simulation is one for which
there is no natural event E to specify the length of a run.

show annotation




It should be mentioned that stochastic
processes for most real systems do not have steady-state distributions,
since the characteristics of the system change over time

show annotation

On the other hand, a simulation model
(which is an abstraction of reality) may have steady-state distributions, since
characteristics of the model are often assumed not to change over time.
When we have new information on the characteristics of the system, we can
redo our steady-state analysis.
show annotation

For a nonterminating simulation, suppose
that the stochastic process Y1, Y2, ... does not have a steady-state
distribution, and that there is no appropriate cycle defi -nition such that the
corresponding process Y1C, Y2C, . . . has a steady-state distribu-tion

show annotation

In these cases, however, there will typically be
a fi xed amount of data describing how input parameters change over time

show annotation

9.4 Statistical Analysis for Terminating Simulations

Suppose that we make n
independent replications of a terminating simulation, where each replication
is terminated by the event E and is begun with the “same” initial conditions

show annotation

Obtaining a specified precision



One disadvantage of the fixed-sample-size
procedure based on n replications is that the analyst has no control over the
confidence-interval half-length (or the precision of X (n)); for fixed n, the
half-length will depend on Var(X), the population variance of the X;'s

show annotation




