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Decision is a risk rooted in the courage of being free.
— Paul Tillich

Lectures:

1. Introduction

1.1 The Evolution of Supply Chain Theory

ried out may reduce their cost. Supply chains used to be viewed,at least by

some managers, as “necessary evils.” As a result, the mindset for su

show annotation

kouts,or other degraded service. By the end of the last century, however, the
purpose of the supply chain had begunto change as some firms discovered

that supply chains could be a source of competitiveadvantage, rather than
simply a cost driver. For example, Dell demonstrated
show annotation

ications of supplychain theory. The final chapter of this book is devoted to

exploring how the tools of supplychain theory are used in a few of these
application areas—electricity systems, health care,and public sector

operations. 1.2 DEFINITIONS AND SCOPEThe ter

show annotation

1.2 Definiton and Scope

of supply chains have evolved. Perhaps the mostauthoritative definition

comes from the Council of Supply Chain Management
Professionals(CSCMP), who define supply chain management as follows
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:Supply chain management encompa

show annotation

ply chain management as follows: Supply chain management encompasses

the planning and management of all activitiesinvolved in sourcing and
procurement, conversion, and all logistics management activi-ties.

Importantly, it also includes coordination and collaboration with channel
partners,which can be suppliers, intermediaries, third party service

providers, and customers. Inessence, supply chain management integrates
supply and demand management withinand across companies . (Council of

Supply Chain Manag
show annotation

anagement Professionals 2018a). These practices include a huge range of
tasks, suchas forecasting, production planning, inventory management,

warehouse location, supplierselection, procurement, and shipping.
Mathematical models have been d

show annotation

twork.Figure 1.2 Supply “chain.” The terms “logistics” and “logistics

management” are closely related to “supply chainmanagement,” and it can
be difficult to draw a clear distinction. Some companies use “lo-gistics”

show annotation

the physical movement of goods; “supply chain management”

includeslogistics, as well as nonmovement activities such as inventory
management and procure-ment. For other companies, “logistics

show annotation

ed more or less interchangeably. Supply chains are often represented

graphically as a schematic network that illustratesthe relationships between
its elements . (See Figure 1.1.) Each vertica

show annotation

ts, etc.) is called an echelon. A location in the network is referred toas a stage

or node. The links between stages represent some type of flow—typically,



theflow of goods, but sometimes the flow of information or money . The

portion of the supplychain
show annotation

e flow of information or money. The portion of the supplychain from which
products originate (the left-hand portion in Figure 1.1) is referred to

asupstream, while the demand end is referred to as downstream. Actually,
the phrase “supply cha

show annotation

chelon has only a single stage. But todayʼs supply chains more

closelyresemble the complex network in Figure 1.1; each echelon may have
dozens, hundreds,or even thousands of nodes. (Nevertheless, we will often

st
show annotation

t of the supply chainas a whole. The ideal supply chain management model
would globally optimize every aspect of thesupply chain, but such a model is

impossible both because of the difficulties in modelingsome aspects of the
supply chain mathematically and because the resulting model wouldbe too

large and complex to solve . Instead, supply chain models t
show annotation

1.3 Levels of Decision-making in Supply Chain
Management

AKING IN SUPPLY CHAIN MANAGEMENT It is convenient to think about three
levels of supply chain management decisions: strategic,tactical, and

operational. • Strategic aspects of the suppl
show annotation

Three level of supply chain management decisions:

strategic

tactical



2. Forecasting and Demad Modeling

2.1 Introduction

DEMAND MODELING2.1 INTRODUCTION Demand forecasting is one of the

most fundamental tasks that a business must perform .It can be a significant

source
show annotation

Advantage:

and lower revenue (Ziobro 2016). The goal of the forecasting models
discussed in this chapter is to estimate the quantityof a product or service

that consumers will purchase . Most classical forecasting tec
show annotation

e that consumers will purchase. Most classical forecasting techniquesinvolve
time-series methods that require substantial historical data. Some of these

methodsare designed for demands that are stable over time . Others can
handle demands that

show annotation

ds to be stable and predictable. However, products today have shorter and

shorter life cycles, in part driven by rapidtechnology upgrades for high-tech
products. As a result, firms have much less historicaldata available to use for

forecasting, and any trends that may be evident in historical datamay be
unreliable for predicting the future .5Fundamentals of Supply Chain T

show annotation

operational

Improving customer service levels and by reducing costs related to supply–
demand mismatches.

Disadvantage

biased or otherwise inaccurate forecasting results in inferior decisions and

thus undermines business performance.



inSections 2.2 and 2.3. Next, i n Section 2.4, we discuss more recent

approaches to forecastingdemand using machine learning when we have
large quantities of historical data available .In Sections 2.5–2.8, we discuss
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Large quantities of historical data available.

s of historical data available.I n Sections 2.5–2.8, we discuss several methods
that can be used to predict demands for newproducts or products that do

not have much historical data. To distinguish these methodsfro
show annotation

not have much historical data. To distinguish these methodsfrom classical
time-series–based methods, we call them demand modeling techniques. The

methods that we discuss in t
show annotation

Demand modeling techniques:

this chapter are quantitative. They all involve mathe-matical models with
parameters that must be calibrated. In contrast, some popular metho

show annotation

meters that must be calibrated. In contrast, some popular methodsfor

forecasting demand with little or no historical data, such as the Delphi
method, rely onexpertsʼ qualitative assessments or questionnaires to develop

forecasts. Demand processes may exhibit var
show annotation

Large quantities of historical data available.

Inadequate historical data

Quantitative

Some popular methods



Demand processes may exhibit various forms of nonstationarity over time.

These include the following:

id growth, maturity, anddecline. Moreover, demands exhibit random error—
variations that cannot be explained or predicted—and this randomness is

typically superimposed on any underlying nonstationarity .2.2 CLASSICAL
DEMAND FORECASTIN

show annotation

superimpose: vt. 使重叠,使叠加

SICAL DEMAND FORECASTING METHODS Classical forecasting methods
use prior demand history to generate a forecast. Some ofthe methods, such

as movi
show annotation

(single) exponential smoothing, assume that pastpatterns of demand will
continue into the future, that is, no trend is present. As a result,these

techniques are
show annotation

As a result, these techniques are best used for mature products with a large
amount of historical data

large amount of historical data. On the other hand, regression analysis and
double and triple exponential smoothing canaccount for a trend or other

pattern in the data. We discuss each of these method
show annotation

2.2.1 Moving Average

Trends: Demand consistently increases or decreases over time.

Seasonality: Demand shows peaks and valleys at consistent intervals.

Product life cycles: Demand goes through phases of rapid growth, maturity,

and decline.



period t −1.2.2.1 Moving Average The moving average method calculates the

average amount of demand over a given intervalof time and uses this
average to predict the future demand. As a result, moving averagefore

show annotation

The definition of Moving Average:

Dt = I + ϵt

where I is the mean or "base" demand and ϵ is a random error term.

d and  t is a random error term. A moving average forecast of order N uses

the  most recent observed demands. Theforecast for the demand in p

show annotation

0 32.90 48.9012 8.98 32.98 22.78 That is, the forecast is simply the
arithmetic mean of the previous N observations. This isknown as a simple

moving average forecast of order N. A generalization of the simple m

show annotation

2.2.2 Exponential Smoothing

.80. 2.2.2 Exponential Smoothing Exponential smoothing is a technique that
uses a weighted average of all past data as thebasis for the forecast. It gives

more weight to recent
show annotation

Assumption:

or both trends and seasonality. These methods all requireuser-specified

parameters that determine the relative weights placed on recent and
olderobservations when predicting the demand, trend, and seasonality .

Single exponential smoothing: the demand process is stationary;

Double exponential smoothing: there is a trend;

Triple exponential smoothing: account for trends and seasonality.



These three weights arecalled,

show annotation

demand, trend, and seasonality. These three weights arecalled, respectively,

the smoothing factor, the trend factor, and the seasonality factor . Wediscuss
each of these three

show annotation

0αiDt−i−1,where αi = α(1 − α)i. The single exponential smoothing forecast

includes all pastobservations, but since αi < αj for i > j, th
show annotation

α)i = 1by (C.50) in Appendix C. These weights can be approximated with an
exponential function f(i) = αe−αi. This is why this method is call

show annotation

.2 Double Exponential Smoothing Double exponential smoothing can beused
to forecast demands with a linear trend. Such demands can be modeled as

show annotation

2.8)can be explained similarly: It places a weight of β on the most recent

estimate of the slope(obtained by taking the difference between the two
most recent base signals) and a weight of 1 − β on the previous estimate .

Note that, if the trend is dow
show annotation

.3 Triple Exponential Smoothing Triple exponential smoothing can be usedto

forecast demands that exhibit both trend and seasonality. Seasonality means
that thedeman

show annotation

�. Single Exponential Smoothing

�. Double Exponential Smoothing

�. Triple Exponential Smoothing



Seasonality: the demand series has a pattern that repeats every N periods for

some fixed N.

seasonal factor one season ago. The idea behind smoothing with trend and

seasonality is basically to “de-trend” and “de-seasonalize” the time series by
separating the base signal from the trend and seasonalityeffects . The

method uses three smoothin
show annotation

s ago) using weighting factor γ. Initializing triple exponential smoothing is a
bit trickier than for single or double expo-nential smoothing. To do so, we

usually need at le
show annotation

double expo-nential smoothing. To do so, we usually need at least two entire
seasonsʼ worth of data(2N periods), which will be used for the initialization

phase. One common method is toinitialize the slope as S2N = 1N(DN+1 −D1N
+ DN+2 −D2N +

show annotation

+2 −D2N + ···+ D2N −DNN). (2.14) In other words, we take the per-period

increase in demand between periods 1 and N + 1, and the per-period
increase between periods 2 and N + 2, and so on; and then we take the

average over those N values. To initialize the seasonal fact
show annotation

2.2.3 Linear Regression

25.90.  2.2.3 Linear Regression Historical data can also be used to forecast
demands by determining a cause–effect rela-tionship between some

independent variables and the demand . For instance, the demandfor sa
show annotation

rice and a givenset of features. In linear regression, the model specification
assumes that the dependent variable, Y , is alinear combination of the



independent variables. For example, in simple linear r

show annotation

stimate theparameters β0 and β1. To build a regression model, we need

historical data points—observations of both theindependent variable(s) and
the dependent variable. Let (x1,y1),(x2,y2),..., (xn,yn

show annotation

2.3 Forecast Accuracy

2.3.1 MAD, MSE and MAPE

Measurements:

ean and variance, respectively. If the mean of the forecast error, µe,equals 0,

we say the forecasting method is unbiased: It does not produce forecasts
that aresystematically either too low or too high. However, even an unbiased

forec
show annotation

denominator of the coefficient. MAD is sometimes preferred to MSE in real
applicationsbecause it avoids the calculation of squaring, though modern

spreadsheet and statisticspackages can compute either performance
measure easily. When the forecast errors arenor
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MAD: Mean Absolute Deviation

MSE: Mean Squared Error

MAPE: Mean Absolute Percentage Error
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2.4 Machine Learning in Demand Forecasting

2.4.1 Introduction

nWe are in the age of big data. The huge volume of data generated every
day, the high velocityof data creation, and the large variety of sources all

make todayʼs business informationenvironment different than it was only a
decade ago. Using data intelligently is key

show annotation

hniques for demand forecasting. Compared with classical

forecastingmethods such as the time series methods discussed in Section
2.2, machine learning modelsoften significantly increase prediction accuracy.

2.4.2 Machine LearningIn general
show annotation

2.4.2 Machine Learning

4.2 Machine LearningIn general, machine learning (ML) refers to a set of

algorithms that can learn from andmake predictions about data . These
algorithms take data as

show annotation

veloped rapidly in recent years. Both techniques fall into the overall field of

data science, which covers a wider range oftopics, including database
design and data visualization techniques. One category of ML algorithms is

show annotation

Regression is a simpleexample. In contrast, unsupervised learning explores

relationships and structures withinthe data without any known “ground truth”
labels or outputs. For example, if we wish toparti

show annotation

her market information (inputs). Common supervised learning methods

include linear regression (and its nonlinear ex-tensions), kernel methods,



tree-based models, support vector machines (SVMs), and neuralnetworks .

Graphical models involving hid
show annotation

nes (SVMs), and neuralnetworks. Graphical models involving hidden Markov
models (or, in their simplest form,mixture models) and Markov random fields

also receive considerable attention. In thefollowing subsections, we
show annotation

the outputs are cate-gorical). The trees used for these two types of

problems are referred to as regression treesand classification trees,
respectively. In demand forecasting, regression trees have receivedmore

attention because of their simplicity and interpretability .A regression tree
divides the s

show annotation

, similar to linear regression. However, in practice, the number of possible

partitionsmay be too large to enumerate. Therefore, it is common to use a
binary splitting methodcalled recursive partitioning, which generates two

regions from the original region at eachiteration. For the purposes of
prediction,

show annotation

递归分割⽅法

gh variance of the forecast, so researchershave developed methods that

combine several trees to enhance the prediction performance.These include
random forests, bagging, and boosting. Tree-based models are used widel

show annotation

velopregression trees to predict stock-keeping unit (SKU) sales for a

European grocery retailer
show annotation

�. Linear regression

�. Tree-based models



n. 库存量单位

2.4.2.3 Support vector machines SVMs are designed to partition the space

ofinput variables into two regions, i.e., to make a binary prediction about a
given outputbased on which region a given input vector falls into. The

partition is accomplished b
show annotation

nd make a predictionaccordingly. SVMs can be generalized to allow
nonlinearities by mapping the input space into ahigh-dimensional space

using kernel functions. In essence, this allows the reg
show annotation

ear, i.e., is not a hyperplane. Popular choices ofkernel functions include
polynomials and radial basis functions (RBFs) .Since SVMs can be used to

make
show annotation

blem.)  2.4.2.4 Neural Networks A neural network consists of several nodes,

also calledneurons, arranged into layers. The first layer of nodes represe
show annotation

a (possibly nonlinear) function. The key challenge in fitting a neural network
model is the determination of the weights α0m and αm. This is usually done

using some sort of algorithm that modifies the weights as the network
“learns” right and wrong answers. The most common such algorithm

show annotation

es the network harder to train. Suchdeep neural networks have led to huge

advances in machine learning, with great successesnot only in classification
and prediction problems such as image processing and demandforecasting,

�. Support vector machines

�. Neural networks



but also, when coupled with reinforcement learning (RL), in solving

decisionproblems such as those in board games ; one famous example is
Google D

show annotation

2.5 Demand Modeling Techniques

closely as possible. To do so, they need tounderstand the life cycles and
demand dynamics of their products .One of the authors has worked w

show annotation

make them work, unsuccessfully. It turns outthat classical forecasting

techniques did not work well with the companyʼs highly variable,short-life-
cycle products, so the firm introduced products at the wrong times in the

wrongquantities. The forecasting teamʼs reaction
show annotation

2.6 Bass Diffusion Model

oducts.)2.6 BASS DIFFUSION MODEL The sales patterns of new products

typically go through three phases: rapid growth, maturity,and decline . The
Bass diffusion model (Bass

show annotation

or television sets in the 1960s. The premise of the Bass model is that

customers can be classified into innovatorsand imitators. Innovators (or early
adopters)

show annotation

increases, and then decreases. Thegoal of the Bass model is to characterize

this behavior in an effort to forecast the demand .It mathematically
characterizes

show annotation

se who have not yet adopted it. Moreover, it attempts topredict two

important dimensions of a forecast: how many customers will eventually



adoptthe new product, and when they will adopt . Knowing the timing of

adoption
show annotation

duct, and when they will adopt. Knowing the timing of adoptions is
importantas it can guide the firm to smartly utilize resources in marketing the

new product. Ouranalysis of this model is ba
show annotation

2.6.1 The Model

It assumes that P(t), the probability that a given buyer makes an initial purchase
at time t given that she has not yet made a purchase, is a linear function of the

number of previous buyers, that is,

P(t) = p +
q

m
D(t)

where D(t) is the cumulative demand by time t. q and m represent the
coefficient of imitation and the market size.

This equation include two influence factors:

(t) in terms of its derivative. Our preference would be to have a closed-form

expressionfor D(t). Fortunately, this is possible: Theorem 2.1D(t) =m 1 −e−
(p+q)t1

show annotation

uct and willdecline thereafter. In summary, by varying the values of p and q,

we can represent manydifferent patterns of demand diffusion .  EXAMPLE

coefficient of innovation, denoted p, which is a constant, independent of
how many other customers have adopted the innovation before time t.

the "contagion" effect between the innovators and the imitators, denoted
q
mD(t), which is proportional to the number of customers who have already
adopted by time t.



2.10The bookstore man

show annotation

2.6.2 Discrete Time Version

odel.2.6.2 Discrete-Time Version A discrete-time version of the Bass model

is available. In this case, dt represents the
show annotation

2.6.3 Parameter Estimation

DEL 292.6.3 Parameter Estimation The Bass model is heavily driven by the
parameters m, p, and q. In this section, we brieflydisc

show annotation

.51)p = am (2.52)q = −mc. (2.53) However, because the Bass model is

typically used for new products, in most caseshistorical data are not available
to estimate the parameters. Instead, m is typically esti-ma

show annotation

ble to estimate the parameters. Instead, m is typically esti-mated

qualitatively, using judgment or intuition from management about the size of
themarket, market research, or the Delphi method . In some markets these

estimate
show annotation

德尔菲法：专家调查法

dailments (Lilien et al. 2007). The parameters p and q tend to be relatively
consistent withina given industry, so these can often be estimated from the

diffusion patterns of similarproducts. Lilien and Rangaswamy (1998) pr
show annotation

2.6.4 Extensions



verviews of these applications. The original model has also been extendedin

a number of ways. Ho et al. (2002) provide a join
show annotation

2.7 Learning Indicator Approach

s.2.7 LEADING INDICATOR APPROACH Product life cycles are becoming

shorter and shorter, so it is difficult to obtain enoughhistorical data to
forecast demands accurately. One idea that has proven to wor

show annotation

to forecast demands accurately. One idea that has proven to work well

insuch situations is the use of leading indicators—products that can be used
to predict thedemands of other, later products because the two products

share a similar demand pattern .This approach was introduced by
show annotation

llular phones, or grocery items. The idea is first to group the products into
clusters so that all of the products within a clustershare similar attributes.

There are several ways to perfo
show annotation

of theproducts in the cluster. Even though all of the products are on the
market simultaneously,the lag provides enough time so that supply chain

planning for the products in the clustercan take place based on the forecasts
provided by the leading indicator. Of course, correctlyidentifying the leading

indicator is critical. Wu et al. (2006) suggest the fol
show annotation

2.8 Discrete Choice Models

2.8.1 Introduction to Discrete Choice

Solution: leading indicators



Introduction to Discrete Choice In economics, discrete choice models involve

choices between two or more discrete alterna-tives . For example, a
customer choose

show annotation

ce is usually more challenging.) The idea behind discrete choice models is to

build a statistical model that predictsthe choice made by an individual based
on the individualʼs own attributes as well as theattributes of the available

choices. For example, a studentʼs choice
show annotation

oice as the dependent variable, choice models are atthe aggregate
(population) level and assume that each decision-makerʼs preferences

arecaptured implicitly by that model. At first, it may seem that discr
show annotation

y useful for forecasting demand. Discrete choice models take many forms,
including binary and multinomial logit, binaryand multinomial probit, and

conditional logit. However, there are several feat
show annotation

the decision-maker must choose. For a discrete choice model, the setof
alternatives in the choice set must be mutually exclusive, exhaustive, and

finite. Thefirst two requirements mean
show annotation

互斥、全⾯、有限的

I; this utility is denoted Uni. Discrete choice models usuallyassume that the
decision-maker is a utility maximizer. That is, he will choose alternative iif and

only if Uni > Unj for all j ∈ I, j ≠ i .If we know the utility values U
show annotation

2.8.2 The Multinomial Logit Model



.8.2 The Multinomial Logit Model Next we derive the multinomial logit model.

(Refer to McFadden (1974) or Train (2009)for further details of the
derivation.) “Multinomial” means that there are multiple optionsfrom which

the decision-maker chooses . (In contrast, binomial models
show annotation

3. Deterministic Inventory Models

3.1 Introduction to Inventory Modeling

er in increments of those units. These are all reasons that firms plan to hold

inventory. In addition, firms may holdunplanned inventory—for example,
inventory of products that have become obsolete soonerthan expected

.Firms may hold inventory of goo
show annotation

me may be uncertain, and so on. In fact, although we tend todiscuss
inventory models as though the firm is buying a product from an outside

supplier,most inventory models apply equally well to production systems, in
which case we aredeciding ho

show annotation

1.2 Classifying Inventory Models Mathematical inventory models can be

classified along a number of different dimensions: • Demand. Is demand
deterministi

show annotation

Mathematical inventory models can be classified along a number of different

dimensions:

Demand

Lead time

Review type

Planning horizon

Stockout type



after which they canʼt be sold). Like all mathematical models, inventory

models must balance two competing factors—realism and tractability . In
many cases, it is more accu

show annotation

ven real-life factor.3.1.3 Costs The goal of most inventory models is to

minimize the cost (or maximize the profit) of theinventory system. Four types
of costs are most co

show annotation

Four types of costs:

DETERMINISTIC INVENTORY MODELS• Stockout cost. This is the cost of not

having sufficient inventory to meet demand, alsocalled the penalty cost or
stockout penalty , and is denoted by p. If excess
show annotation

ory Level and Inventory Position There are several measures that we use to

assess the amount of inventory in the system atany given time. On-hand

inventory (OH) refers to
show annotation

There are several measures that we use to assess the amount of inventory in the
system at any given time.

Ensuring good service

Fixed cost

Perishability

Holding cost

Fixed cost

Purchase cost

Stockout cost

On-hand inventory (OH) refers to the number of units that are actually

available at the stocking location.



UANTITY PROBLEM 51review model, the economic order quantity (EOQ)

model, perhaps the oldest and best-known mathematical inventory model
(Section 3.2), and some of its extensions; and thena periodic-review model ,

the Wagner–Whitin model (Secti
show annotation

els are considered in Chapter 6. The models discussed in this chapter are
sometimes known as economic lot size problems. In fact, there is some

inconsist
show annotation

经济批量问题

3.2 Continuous Review: The Economic Order
Quantity Problem

3.2.1 Problem Statement

Y PROBLEM3.2.1 Problem Statement The economic order quantity (EOQ)
problem is one of the oldest and most fundamentalinventory models; it was

first introduced by Harris (1913). The goal is to determine theoptimal amount
to order each time an order is placed to minimize the average cost per year.

(Weʼll express everything per ye
show annotation

placed, and the process repeats. Any optimal solution for the EOQ model has
two important properties: • Zero-inventory ordering (ZIO)

show annotation

Backorders (BO) represent demands that have occurred but have not been

satisfied. Generally, it s̓ not possible for the on-hand inventory and the
backorders to be positive at the same time

The inventory level (IL) is equal to the on-hand inventory minus backorders

inventory position (IP), which equals the inventory level plus items on order



Any optimal solution for the EOQ model has two important properties:

T  is the cycle length. meaning the amount of time between orders, and it relates

to the order quantity Q and λ by the equation:

T =
Q

λ

3.2.2 Cost Function

ationT = Qλ .3.2.2 Cost Function We want to find the optimal Q to minimize

the average annual cost. (We say “average”annual cost sin

show annotation

ng very tiny order quantities. T he key trade-off is between fixed cost and
holdingcost: If we use a large Q, weʼll place fewer orders and hold more

inventory (small fixedcost but large holding cost), whereas if we use a small
Q, weʼll place more orders and holdless inventory (large fixed cost but small

holding cost). The strategy for solving the EOQ

show annotation

�. Zero-inventory ordering (ZIO) property;

�. Constant order sizes.



isKT = KλQ . (3.1)Holding Cost: The average inventory level in a cycle is Q/2,
so the average amount ofinventory per year is Q/2 ·1 year = Q/2 . (Another

way to think about th
show annotation

3.2.3 Optimal Solution

igure 3.3.3.2.3 Optimal Solution The optimal Q can be obtained by taking the

derivative of g(Q) and setting it to 0: dg(Q)dQ = −KλQ2 + h2 = 0=⇒ Q2 =

show annotation

Q∗ is the economic order quantity. Then, the optimal total cost is g(Q∗) is:

g(Q∗) = √2Kλh

Order cost per year

K

T
=

Kλ

Q

Average Annual Holding Cost

hQ

2

where K is a fixed cost per order, h is an inventory holding cost per unit per

year. c is purchase cost per unit ordered.

Total Cost

g(Q) =
Kλ

Q
+

hQ

2

dg(Q)

dQ
= −

Kλ

Q2
+

h

2
= 0

⟹ Q2 =
2Kλ

h

⟹ Q∗ = √ 2Kλ

h



moreinventory. (And vice versa.) Another way to see that the fixed and

holding costs are equal in the optimal solution isto note that the product of
the two terms in (3.3) i sKλQ · hQ2 = Kλh2 ,a constant. I

show annotation

ot true for many otherproblems. The ability to express g(Q�) in closed form

allows us to learn about structuralproperties of the EOQ and related models,
such as the power-of-two policies discussed inSection 3.3, as well as to

embed the EOQ into other, richer models, such as the locationmodel with risk
pooling (LMRP) in Section 12.2 .The optimal EOQ solution and it

show annotation

(3.7)Using Theorem 3.1, we can make some statements about how the

solution changes asthe parameters change: • As h increases, Q� decreases,
show annotation

m prefers small demand, however. Remember that the EOQ only reflects
costs, not revenues; the increased cost of large λwould be outweighed by

the increased revenue .  EXAMPLE 3.1Joeʼs Corner Store
show annotation

3.2.4 Sensitivity Analysis

304.  3.2.4 Sensitivity Analysis Suppose the firm did not want to order Q∗

exactly. For example, it might need to order in multiples of 10(Q = 10n), or it

might want to order every month (T = 1/12). How muchmore expensive is a
sub

show annotation

Theorem: Suppose Q∗ is the optimal order quantity in the EOQ model, then for

any Q > 0:

g(Q)

g(Q∗)
=

1

2
(
Q∗

Q
+

Q

Q∗ )

= Q�/2), the error is also 1.25. Theorem 3.2 ignores the per-unit cost c. If we

include the annual cost cλin the numeratorand denominator of (3.8), then the



percentage increase in cost would be even smaller (andthe expressions

would not si
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3.2.5 Order Lead Times

sWe assumed the lead time is 0. What if the lead time was positive—say, L
years? Theoptimal solution doesnʼt change—we just place our order L years

before itʼs needed. Forexample, if L = 1 month = 1/
show annotation

ethe inventory level reaches 0. Itʼs generally more convenient to express this
in terms ofthe reorder point (r). When the inventory level reache

show annotation

So how do we compute r? It should be equal to the amount of product

demanded during the lead time, or

r = λL

3.3 Power-of-two Policies

, for example, every √10 weeks? In this section, we discusspower-of-two
policies, in which the order interval is required to be a power-of-two

multipleof some base period. The base period may be any time

show annotation

he base period is a day (say), t hen the power-of-two restriction says that
orders can beplaced every 1 day, or every 2 days, or every 4 days, or every 8

days, and so on , or every 1/2day, or every 1/4

show annotation

nvolving base periods like √10. Wealready know that the EOQ model is
relatively insensitive to deviations from the optimalsolution from Theorem

3.2. Our goal is to determine exactly how much more expensive apower-of-
two policy is than the optimal policy .Power-of-two policies have anot
show annotation



own inventory planning easier. T he problem of finding optimalorder intervals

in this setting is one version of a problem known as the one
warehouse,multiretailer (OWMR) problem . The optimal policy for the OWM

show annotation

3.3.2 Error Bound

isfying (3.14).3.3.2 Error Bound Theorem 3.3 If ˆT is the optimal power-of-t

show annotation

Theorem 3.3 If T̂  is the optimal power-of-two order interval and T ∗ is the

optimal (not necessarily power-of-two) order interval, then

f(T̂ )

f(T ∗)
≤

3

2√2
≈ 1.06

, thenf( ˆT)f(T�) ≤ 32√2 ≈1.06.I n other words, the cost of the optimal

power-of-two policy is no more than 6% greaterthan the cost of the optimal
(non-power-of-two) policy . This holds for any choice of t

show annotation

Hints for proof: the optimal power-of-two order interval T̂  must be in the interval

[ 1
√2

T ∗, √2T ∗]. Since we don't know precisely where T̂  falls in the range, so it is

only a worst-case bound that occurs on the endpoints of the range.

3.4 The EOQ With Quantity Discounts

THE EOQ WITH QUANTITY DISCOUNTS It is common for suppliers to offer
discounts based on the quantity ordered . The larger theorder, the lower

show annotation

n bulk, you pay less per unit.) The specificstructure for the discounts can

take many forms, but two types are most common: all-unitsdiscounts and
incremental discount s. Both discount structures use

show annotation



3.4.1 All-Units Discounts

le 3.5.3.4.1 All-Units Discounts We can no longer ignore the purchase cost as

we did in (3.3). In fact, not only do we needto include the purchase cost
itself, but we must also account for the fact that the holdingcost typically

depends on the purchase cost , as discussed in Section 3.1.3.
show annotation

its quantity discount structure. Suppose we knew that the optimal order
quantity lies in region j. Then we would simplyneed to find the Q that

minimizes the EOQ cost function for region j: gj(Q) = cjλ + KλQ + icjQ2 . (3.1
show annotation

gj(Q) = cjλ +
Kλ

Q
+

icjQ

2

Its minimizer is given by:

Q∗
j = √

2Kλ

icj

3.4.2 Incremental Discounts

60.  3.4.2 Incremental Discounts We now turn our attention to incremental

discounts. The total cost function for region j is given by gj(Q) = c(Q)Q λ +
KλQ + ic(Q)Q Q

show annotation

gj(Q) =
c(Q)

Q
λ +

Kλ

Q
+

i
c(Q)
Q Q

2

where

c(Q) =
j

∑
i=0

ci(bi+1 − bi) + cj(Q − bj)

Then, we can rewrite gj(Q) as



where

c̄j =
j−1

∑
i=0

ci (bi+1 − bi) − cjbj

so the minimizer is given by

Q∗ = √
2(K + c̄j)λ

icj

with cost

gj(Q
∗) = cjλ +

ic̄j

2
+√2(K + c̄j)λicj

3.4.3 Modified All-Units Discounts

4.3 Modified All-Units Discounts All-units discounts are somewhat

problematic because, for order quantities Q just to theleft of breakpoint j, it is
cheaper to order bj than to order Q , even though Q < bj. Forexample

show annotation

le, ship 390 kg, declare 400 kg. This structure is sometimes known as the

modified all-units discount structure. Its c(Q)curve is displayed in F
show annotation

e c(Q) curve; see Figure 3.8(b). A special case of the modified all-units
discount structure is the carload discount struc-ture, in which the bj are

equally spaced and cj is the same for all j. This structure arisesfrom rail
show annotation

gj(Q) =
1

Q
[
j−1

∑
i=0

ci (bi+1 − bi) − cjbj]λ + cjλ +
Kλ

Q

+
i

2
[
j−1

∑
i=0

ci (bi+1 − bi) − cjbj] +
icjQ

2

=cjλ +
ic̄j

2
+

(K + c̄j)λ

Q
+

icjQ

2



d all-units discounts structure. Unfortunately, modified all-units discount

structures are much more difficult to analyzethan the discount structures
discussed above. (See, for example, Chan et al.

show annotation

3.5 The EOQ with Planned Backorders

hat backorders are not allowed. In this section, we discuss avariant of the
EOQ problem in which backorders are allowed. Since demand is determin-68

DET
show annotation

Let p be the backorder penalty per item per year, and let x be the fraction of
demand that is backordered. Both Q and x are decision variables. The holding

cost is charged based on on-hand inventory; the average on-hand inventory is
given by:

1

2
Q(1 − x) ⋅

(1 − x)T

T
=

Q(1 − x)2

2

Similarly, the average backorder level is:

Qx2

2

There, the total average cost per year in the EOQB is given by:

g(Q,x) =
hQ(1 − x)2

2
+

pQx2

2
+

Kλ

Q

is a function of both Q and x. Therefore, to minimize it, we need to take
partialderivatives with respect to both variables and set them equal to 0.
∂g∂x = −hQ(1 −x) + pQx = 0 (3.24

show annotation

∂g

∂x
= −hQ(1 − x) + pQx = 0

∂g

∂Q
=

h(1 − x)2

2
+

px2

2
−

Kλ

Q2
= 0



for the first equation, we have:

Then, plug x∗, we have

Then

g(Q∗,x∗) = √ 2Kλhp

h + p

.28)g(Q�,x�) =√2Kλhph + p (3.29) How do the optimal solution and cost in

Theorem 3.5 compare to the analogous quantitiesfrom the EOQ model? First,
comparing (3.29) and (3.

show annotation

As p → ∞, Q∗ approaches the optimal EOQ order quantity, x∗ approaches 0, and

the optimal cost approaches the EOQ optimal cost.

tantial savings inholding cost. As we continue to increase the number of

backorders, the marginal savingsin holding cost decreases and the marginal
increase in backorder cost increases . At somepoint, the marginal cos

show annotation

3.6 The Economic Production Quantity Model

ONOMIC PRODUCTION QUANTITY MODEL In a manufacturing environment,
the amount of time required to produce a batch of itemsusually depends on

how large the batch is—producing more items requires more time. TheEOQ

−hQ(1 − x) + pQx = 0
⟺ h(1 − x) = px

⟺ x∗ =
h

h + p

Q∗ = √
2Kλ

h(1 − x)2 + px2

Q∗ = √
2Kλ(p + h)

hp



model cannot handle this

show annotation

ardless of the order quantity. I n other words,the EOQ assumes that the

production rate is infinite—an arbitrary number of items can beproduced in a
fixed amount of time . This assumption may be reasona

show annotation

ng the inventory at a rate ofλ. Let ρ = λ/µ be the utilization ratio, which

indicates the portion of time the system isactive. Q is now interpreted as a
production batch size rather than an order quantity. The process is depicted

in Figur
show annotation

ch cycle, is ρT(µ −λ) = (1 −ρ)Q. The fixed cost per year is still Kλ/Q, as in the
EOQ model, since T = Q/λ. Theaverage inventory level is (

show annotation

The order interval

T =
Q

λ

Active interval

Q



sg(Q) = KλQ + h(1 −ρ)Q2 . (3.30) We could find the Q that minimizes this

cost function by differentiating, as we did for theEOQ, but it is simpler to
recognize

show annotation

3.7 Periodic Review: The Wagner-Whitin Model

3.7.1 Problem Statement

TIN MODEL3.7.1 Problem Statement We now shift our attention to a periodic-

review model known as the Wagner–Whitinmodel (Wagner and Whitin 1958).

Simil
show annotation

58). Similar to the EOQ model, t he Wagner–Whitin modelassumes that the

demand is deterministic, there is a fixed cost to place an order, and stock-
outs are not allowed . The objective is to choose ord
show annotation

ties to minimize the total cost. However, unlike the EOQ model, the Wagner–

Whitin model allows the demand to changeover time—to be different in each
period . This model is sometimes referr

Q

μ
= ρT

Maximum inventory level

ρT (μ − λ) = (1 − ρ)Q

Fixed cost per year: Kλ
Q

Average inventory level: (1−ρ)Q
2

Average annual holding cost: h(1−ρ)Q
2

Total annual cost

g(Q) =
Kλ

Q
+

h(1 − ρ)Q

2



show annotation

dynamic economic lot-sizing (DEL) model

o be different in each period. T his model is sometimes referred to as
thedynamic economic lot-sizing (DEL) model or the uncapacitated lot-sizing

(ULS) model. Because of the fixed cost, it ma
show annotation

f events 2 and 3 were reversed.) We first formulate this model as a mixed-
integer optimization problem (MIP). We willthen discuss a dynamic

programming (DP) algorithm for solving it. 3.7.2 MIP FormulationOur formula
show annotation

3.7.2 MIP Formulation

tory at the end of each period. Constraints (3.34)are the inventory-balance
constraints: They say that the ending inventory in period t isequal to the

starting inventory, plus the new units ordered, minus the demand.
Constraints(3.35) prohibit qt f

show annotation

constraints on the y variables. This problem can be interpreted as a simple

supply chain network design problem (to bemore precise, an arc desig
show annotation

gn problem; see Section 8.7.2). It can be solved as an MIP, but it ismore
common to solve it using DP or as a shortest path problem, as we discuss in

the nextsection . See Pochet and Wolsey (1995, 2
show annotation

3.7.3 Dynamic Programming Algorithm

depends on the following result: Theorem 3.7 Every optimal solution to the
Wagner–Whitin model has the ZIO property;that is, it is optimal to place

orders only in time periods in which the initial inventory iszero .Proof.



Suppose (for a contradic

show annotation

ur 1991,Wagelmans et al. 1992). Despite the efficiency of this algorithm, a

number of heuristicshave been introduced and are still popular in practice.
These include Silver–Meal, partperiod balancing, least unit cost, and other

heuristics (Silver et al. 1998). One expla
show annotation

4. Stochastic Inventory Models: Periodic
Review

DIC REVIEW4.1 INVENTORY POLICIES In this chapter and the next, we will
consider inventory models in which the demand isstochastic . A key concept

in these chapter
show annotation

which the demand isstochastic. A key concept in these chapters will be that
of a policy. A policy is a simple rulethat provides a solution to the inventory

problem. For example, consider a periodi
show annotation

l more closely in Section 4.4.) One could imagine severalpossible policies for
this system. Here are a few: 1. Every R periods, place an ord

show annotation

�. Every R periods, place an order for Q units.

�. Whenever the inventory position falls to s, order Q units.

�. Whenever the inventory position falls to s, place an order of sufficient size

to bring the inventory position to S.

�. Place an order whose size is equal to the first two digits of last night s̓

lottery number. Then, wait a number of periods equal to the last two digits
of the lottery number before placing another order.



icy depends on its parameters.1 Forexample, policy 1 sounds reasonable, but

only if we choose good values for R and Q. It is often possible (and always
show annotation

smallest possible expected cost. When using policies, then, inventory
optimization really has two parts: Choosing theform of the optimal policy and

choosing the optimal parameters for that policy. Sometimeswe canʼt solve
one of t

show annotation

d approximately optimal values. Similarly, for some problems,no one even

knows the form of the optimal policy, so we simply choose a policy that
seemsplausible .Weʼll consider periodic-review

show annotation

scuss the lost-sales assumption. Before continuing, we introduce two

important concepts in stochastic inventory theory:cycle stock and safety
stock. Cycle stock (or working invento

show annotation

cle and safety stock components. Weʼll see later that the cycle stock
depends on the mean of the demand distribution, whilethe safety stock

depends on the standard deviation. 1 We donʼt mean the inputs to th
show annotation

4.2 Demand Processes

PROCESSES 894.2 DEMAND PROCESSES In real life, customers tend to

arrive at a retailer at random, discrete points in time. Similarly,(some)
retailers plac

show annotation

Cycle stock (or working inventory) is the inventory that is intended to meet

the expected demand.

Safety stock is extra inventory that s̓ kept on hand to buffer against

uncertainty.



, and so on up thesupply chain. One way to model these demands is using a

Poisson process, which describesrandom arrivals to a system over time. If
each customer may demand mor

show annotation

ion withmean µ and variance σ2. Sometimes, the normal distribution is used

as an approximationfor the Poisson distribution, in which case μ = σ2 since
the Poisson variance equals itsmean. (This approximation is especially

accurate when the mean is large. )In the continuous-review case,
show annotation

period is normally distributed. One drawback to using the normal distribution
is that any normal random variable willsometimes have negative realizations,

even though the demands that we aim to model arenonnegative . If the
demand mean is much gre

show annotation

l that we can simply ignore it. This suggeststhat the normal distribution is

appropriate as a model for the demand only if μ ≫ σ — say,if μ > 4σ. If this
condition fails to hold

show annotation

4.3 Periodic Review With Zero Fixed Costs: Base-
stock Policies

FIXED COSTS: BASE-STOCKPOLICIES For the remainder of this chapter, we

focus on periodic-review models . The time horizonconsists of T
show annotation

ant throughout the time horizon. We will model the time value of money by
discounting future periods using a discountfactor γ ∈ (0, 1] . That is, $1 spent

(or received
show annotation



, then there is no discounting. For the single-period and finite-

horizonproblems, our objective will be to minimize the total expected
discounted cost over thehorizon . However, the total cost over a

show annotation

4.3.1 Base-Stock Policies

m follows a base-stock policy.2 A base-stock policy works as follows: In each

time period, we observe the current inventory position and then place an
order whose size is sufficient to bring the inventory position up to S . (We

sometimes say we “order up
show annotation

4.3.2 Single Period: The Newsvendor Problem

uct during a singletime period. Single-period models are most often applied
to perishable products, whichinclude (as you might expect) products such as

eggs and flowers that may spoil, but alsoproducts that lose their value after a
certain date, such as newspapers, high-tech de

show annotation

gle-period model presented here. This model is one of the most fundamental

stochastic inventory models, and many ofthe models discussed
subsequently in this book use it as a starting point. It is often referredto as

the n
show annotation

and a standard deviation of 8. If the newsvendor has unsold newspapers left
at the endof the day, he cannot sell them the next day, but he can sell them

back to the publisherfor $0.12 (called the salvage value). The question is:
How many newsp

show annotation

apers each day—buthow many more? The inventory carried by the

newsvendor can be decomposed into two components:cycle stock and



safety stock . As noted in Section 4.1, cycle

show annotation

eutral term “newsvendorproblem.” As previously noted, the newsvendor

model applies to perishable goods. In particular,it applies to goods that
perish before the next ordering opportunity. Many perishable goodshave a

she
show annotation

fit and loss-of-goodwill costs. The holding cost is the cost per unitof positive
ending inventory, while the stockout cost is the cost per unit of negative

endinginventory. The costs h and p are sometimes referred to as overage
and underage costs, respectively (and some authors d

show annotation

onʼtplay a role in the analysis. We will refer to the model discussed here as

the implicit formulation of the newsvendorproblem since the costs and
revenues are not modeled explicitly but instead are accountedfor in the

holding and stockout costs h and p . (In contrast, see the explicit
show annotation

e discrete demand distributions. Our goal is to determine the base-stock
level S to minimize the expected cost in thesingle period. The strategy for

solving this pr
show annotation

X −x)−] =∫ x0(x −y)f(y)dy. (4.5) These functions are known as the loss
function and the complementary loss function,3respectively. They can be

defined for any pro
show annotation

Let I(S, d) = (S − d)+, and B(S, d) = (d − S)− be the on-hand inventory and
backorders, respectively. At the end of period if the firm orders up to S and sees

a demand of d units. The cost for an observed demand od d is:

g(S, d) = hI(S, d) + pB(S, d)

= h(S − d)+ + p(d − S)−



Since the demand is stochastic, however, we must have an expectation over D.

Let I(S) = E[I(S, d)] = E[B(S,D)] be the expected on-hand inventory and
backorders if the firm orders up to S. Then

let

Then:

g(S) = hn̄(S) + pn(S)

Since

where μ is the mean value of f(x). So we can simplify the expression of g(S):

These functions are known as the loss function and the complementary loss
function, respectively. Here we can calculate the derivatives of the above two

equations according to the Leibniz's Rule:

g(S) = hI(S) + pB(S)

= hE [(S − D)+] + pE [(D − S)+]

= h∫
∞

0
(S − d)+f(d) d d + p∫

∞

0
(d − S)+f(d) d d

= h∫
S

0
(S − d)f(d) d d + p∫

∞

S

(d − S)f(d) d d

n(x) = E [(X − x)+] = ∫
∞

x

(y − x)f(y) d y

n̄(x) = E [(X − x)−] = ∫
x

0
(x − y)f(y) d y

n̄(S) = ∫
S

0
(S − d)f(d) d d

= ∫
+∞

0
(S − d)f(d) d d − ∫

+∞

S

(S − d)f(d) d d

= S − μ + ∫
+∞

S

(d − S)f(d) d d

= S − μ + n(S)

g(S) = h[S − μ + n(S)] + pn(S)

= h(S − μ) + (h + p)n(S)

https://blog.csdn.net/weixin_39699362/article/details/136282346#:~:text=Leibniz%E7%A7%AF%E5%88%86%E6%B3%95%E5%88%99%EF%BC%88Leibniz%20Integral%20Rule%EF%BC%89%E4%B9%9F%E8%A2%AB%E7%A7%B0%E4%B8%BA%E7%A7%AF%E5%88%86%E7%9A%84%E5%BE%AE%E5%88%86%E6%B3%95%E5%88%99%EF%BC%88Differentiation%20under,the%20Integral%20Sign%EF%BC%89%EF%BC%8C%E5%AE%83%E6%98%AF%E6%95%B0%E5%AD%A6%E4%B8%AD%E4%B8%80%E4%B8%AA%E7%94%A8%E6%9D%A5%E4%BA%A4%E6%8D%A2%E5%BE%AE%E5%88%86%E8%BF%90%E7%AE%97%E5%92%8C%E7%A7%AF%E5%88%86%E8%BF%90%E7%AE%97%E9%A1%BA%E5%BA%8F%E7%9A%84%E6%96%B9%E6%B3%95%E3%80%82%20%E8%BF%99%E4%B8%AA%E6%B3%95%E5%88%99%E5%85%81%E8%AE%B8%E6%88%91%E4%BB%AC%E5%9C%A8%E4%B8%80%E5%AE%9A%E6%9D%A1%E4%BB%B6%E4%B8%8B%E5%AF%B9%E5%90%AB%E6%9C%89%E5%8F%82%E6%95%B0%E7%9A%84%E7%A7%AF%E5%88%86%E8%A1%A8%E8%BE%BE%E5%BC%8F%E8%BF%9B%E8%A1%8C%E5%BE%AE%E5%88%86%E3%80%82


Similarly,

n̄′(x) = F(x)

So we have n′′ = n̄′′ = f(x) > 0, so both n(⋅) and n̄(⋅) are convex. To minimize
g(S), thus, we set its first derivative to 0,

n′(x) = (y − x)f(y)
y=x

+ ∫
+∞

x

∂(y − x)f(y)

∂x
d y

= 0 + ∫
+∞

x

(−1)f(y) d y

= F(x) − F(+∞)

= F(x) − 1 ∣d g(S)

dS
= h + (h + p)[F(x) − 1] = (h + p)F(S) − p = 0

F(S) =
p

h + p

S = F −1(
p

p + h
)



Note：直观来理解，就是最优解 S ∗ 符合 P [d > S ∗] = p
h+p , 即右边表示售罄是的损

失 p, 左边表示持货成本 h。S ∗ 会随着 h 增加⽽减少，随着 p 增加⽽增加。

theorem (whichweʼve now proven). Theorem 4.1 The optimal base-stock
level for a single-period model with no fixed costs(the newsvendor model) is

given by S� = F−1( ph + p).94 STOCHASTIC

show annotation

plotted on demand distribution. p/(h + p) is known as the critical ratio (or
critical fractile). It is implicit in a result byAr
show annotation

.  4.3.2.4 Explicit Formulation The formulation given in Sections 4.3.2.2–

4.3.2.3 in-terprets hand pas the overage and underage costs, respectively—
the cost per unit of havingtoo much or too little inventory. The actual cost
and revenue par

show annotation



(h + r −v) ̄n(S) + pn(S). (4.19) Sometimes, this is instead formulated as a

profit maximization problem in which we maximize π(S) ≡ −g(S). 96
STOCHASTIC INVENTORY MODELS:

show annotation

1( p + r −ch + p + r −v). (4.20) We can translate this to the implicit version of

the problem by determining the overageand underage costs (which weʼll
denote by h′ and p′

show annotation

Actually, we can translate this explicit formulation to the implicit version by

determining the overage and underage costs (which we'll denote by h′ and p′,
respectively).

S ∗ = F −1(
p′

h′ + p′ ) = F −1(
p + r − c

h + c − v + p + r − c
) = F −1(

p + r − c

h + p + r − v
)

where r is the revenue earned per unit sold, c is the cost per unit purchased, and
v is the salvage value earned for each unit of excess inventory.

ve constant (see Problem 4.15).I t is perfectly acceptable to set any of the
cost or revenue parameters to 0 if they arenegligible or should not be

included in the model .One word of caution: Avoid mixi
show annotation

ph + p⇐⇒ S� = µ + σΦ−1( ph + p). If we let α = p/(h + p), we have S� = µ +
zασ. (4.24)The first te

show annotation

If we let α = p

h+p
, we have

S ∗ = μ + zασ

h′ = h + c − v : For each unit of excess inventory, we incur a holding cost of
h, and we paid c for the extra unit but earn v as a salvage value.

p′ = p + r − c : For each stockout, we incur a penalty of p in addition to the
lost profit r − c.



alreadyhas too much inventory. But should the firm order any units? By the

convexity of g(S),the answer is no: It would be better to leave the inventory
level where it is . Therefore, theoptimal order qu

show annotation

ays to do this (see Chapter 2); one of the simplest is to use a moving

average(Section 2.2.1) to estimate µand what we might call a moving
standard deviation to estimateσ in period t :ˆµt = 1Nt−1∑i=t−Ndt ˆσt =√√√√

1
show annotation

)Δg(S)Figure 4.3 g(S) and Δg(S). 4.3.2.8 Discrete Demand Distributions
Suppose now that D is discrete. In thiscase, (4.3) becomes g(S) = hS∑d=0(S

−d)f(d) + p∞∑d=S
show annotation

4.3.3 Finite Horizon

roblem 4.16.4.3.3 Finite Horizon Now consider a multiple-period problem
consisting of a finite number of periods, T.Suppose we are at the beginning

of period t . Do we need to know the history
show annotation

Let θt(x) be the optimal expected cost in periods t, t + 1, ⋯ ,T  if we begin
period t with an inventory level x. Then, we have

θt(x) = min
y≥x

{c(y − x) + g(y) + γED[θt+1(y − D)]}

where

The interpretation of each term can be explained as follows:

g(y) = h∫
y

0
(y − d)f(d) d d + p∫

∞

y

(d − y)f(d) d d = hn̄(y) + pn(y)



Note: figure from 【供应链理论基础】零固定成本的周期性盘点条件下基本库存策
略（Base-Stock Policy）最优性的证明

depended only on the period, t. First consider what happens at the end of
the time horizon. Presumably, on-handunits and backorders must be treated

differently now that the horizon has ended than theywould be during the
horizon . The terminal cost function, de

show annotation

4.3.4 Infinite Horizon

osts is the case inwhich T = ∞. This problem is sometimes referred to as the

infinite-horizon newsvendormodel. If the number of periods is infi
show annotation

It certainly will be if γ = 1.) An alternate objective is to minimizethe expected
cost per period. The former case is known as the discounted-cost

criterion,while the latter is known as the average-cost criterion . Weʼll
consider the average-cos

show annotation

Under the average cost criterion, we assume γ = 1. The expected cost in a given

period if we use back-stock level S is given by:

S

https://mp.weixin.qq.com/s/205pG6pGNTwsBZaKOLJn2A


Now suppose γ < 1, consider the discounted-cost criterion. The optimal base-

stock level is the same in every period, and it is given by

S ∗ = F −1(
p − (1 − γ)c

h + p
)

Then, if demand is normally distributed, then after modifying to account for γ,

the results would be

S ∗ = μ + σΦ−1(
p − (1 − γ)c

h + p
) = μ + zασ

where α = ( p−(1−γ)c
h+p ).

4.1—is optimal, inevery period! In formulating (4.38), we glossed over two

potentially problematic issues. First, whydidnʼt we account for
show annotation

Two problematic issues:

4.4 Periodic Review With Nonzero Fixed Costs:
(s,S) Polices

4.4.1 (s,S) Policies

s,S) POLICIES4.4.1 (s,S)Policies We now consider the more general case in

which the fixed cost K may be nonzero. If K ≠ 0, it may no longer make
sense to order in every period, since each order incurs a cost. PERIODIC
REVIEW WITH NONZERO FIX

show annotation

g(S) = h∫
S

0
(S − d)f(d) d d + p∫

∞

S

(d − S)f(d) d d = hn̄(y) + pn(y)

�. Why didnʼt we account for the purchase cost c,

�. Why didnʼt we account for the cost in future periods?



FIXED COSTS: (s,S) POLICIES 115 Instead, the firm should order only when

the inventory position becomes sufficiently low. In particular, we will assume
in

show annotation

inventory position up to S. Bot Both s and S are constants, and s ≤ S.The

quantity s is known as the reorder point and S as the order-up-to level . The
reorderpoint and order-up-

show annotation

olicy, as we doin this section; the optimality of (s,S) policies for multiperiod

problems was not provenuntil Scarfʼs (1960) paper .(s,S) polices are closely
relat

show annotation

each period can only be 0 or 1. We will discuss how to determine the optimal

s and S for the single-period, finite-horizon, and infinite-horizon cases
separately , just as we did in Section 4.3

show annotation

3 for the zero-fixed-cost case. Actually, the single-period case is not nearly

as useful for the K > 0 caseas it is for the K = 0 case . This is because
single-period

show annotation

4.4.2 Single Period

rt of the (single) period is x. For given s and S, theordering rule is: If x ≤ s,

order S − x; otherwise, order 0. Once we order (or donʼt), weinc
show annotation

⼀旦订购（或不订购），就会产⽣持有和缺货成本，就像在零固定成本模型中⼀

样，只是基础库存⽔平被 S（如果我们订购）和 x（如果我们不订购）取代。因

此，该期间的总预期成本（作为 s 和 S 的函数）由下式给出

g(s,S) = {
K + g(S), if x ≤ s

g(x), if x > s



ed costs, we areassuming c = 0.) Optimizing g(s,S) over s and S is actually

quite easy (Karlin 1958b): We already knowfrom Theorem 4.1 that
F − 1(p/(h + p)) minimizes g(S), so our aim should be to order u

show annotation

4.4.3 Finite horizon

ue if x > s.4.4.3 Finite Horizon The finite-horizon model with nonzero fixed

costs can be solved using a straightforwardmodification of the DP model for
the zero-fixed-cost case from Section 4.3.3. Just as before,θt(x) represents

show annotation

(and act optimally thereafter). Now θt(x) must account for the fixed cost in

period t (if any), as well as the purchase cost and expected holding and
stockout costs in period t, and the expected future costs, as in the K = 0

model. In particular ,θt(x) = miny≥x{Kδ(y −x) + c(y −
show annotation

Now θt(x) must account for the fixed cost in period t (if any), as well as the
purchase cost and expected holding and stockout costs in period t, and the

expected future costs, as in the K = 0 model. In particular,

θt(x) = min
y≥x

{Kδ(y − x) + c(y − x) + g(y) + γED[θt+1(y − D)]}

where

δ(z) = {

Note : Since here fixed cost is not zero, so add the fixed costs term Kδ(y − x). It
also consists of the general equation of periodic review, as follows (figure from

Link):

1, if z > 0

0, otherwise

https://mp.weixin.qq.com/s/205pG6pGNTwsBZaKOLJn2A


each startinginventory level x. However, just as before, we would rather have

a simple policy to follow, rather than having to specify yt(x) for every t and x .
And, just as before, this is a

show annotation

oint at which we stop ordering. In particular, for period t, there are values St

and st such that for x ≤ st, we have yt(x) = St, and for x > st, we have
yt(x) = x. In other words, these curves each depict an (s,S) policy. We will

prove in Section 4.5.2.
show annotation

4.4.4 infinite Horizon

0: yt(x).4.4.4 Infinite Horizon Recall that the infinite-horizon model with no

fixed costs (Section 4.3.4) is as simple asthe single-period model (Section
4.3.2). Unfortunately, this is not true
show annotation

-period model (Section 4.3.2). U nfortunately, this is not true in the fixed-

costcase. The infinite-horizon model is more difficult than its single-period or
finite-horizoncounterparts . To analyze it, we will need a
show annotation

ll need a bit of renewal theory. A renewal process is a random variable N(t)

that counts the number of “renewals”that have occurred by time t, where the
amount of time between the (n − 1)st renewal and the nth renewals is a



random variable Xn . The Xn are independent and ide

show annotation

4.5 Policy Optimility

(optimal) 4.5 POLICY OPTIMALITY Now that we know how to find the optimal
S for a base-stock policy (Section 4.3) and the optimal s and S for an (s,S)

policy (Section 4.4), we prove that those policy types are in fact optimal for
their respective problems . In a way this is a lot to ask—

show annotation

In a way this is a lot to ask—w e are trying toshow that no other policy, of any

type, using any parameters, can outperform our chosenpolicy type (provided
we choose the optimal parameters) in the long run . Fortunately, wedo not

need to
show annotation

imal policy has the desiredform. We will first consider the zero-fixed-cost
case, then the fixed-cost case, in both casesconsidering single-period,

finite-horizon, and infinite-horizon cases separately . We willuse the same
assumption

show annotation

ion as in Section 4.4, as well. We continue to assumethat the cost and

demand parameters are stationary, but the results below still hold if
thesevary from period to period (deterministically). Letʼs focus for a minute

on fini
show annotation

Recall the optimal cost in periods t, ⋯ ,T  if we begin period t with an inventory
level of x, can be calculated recursively as:

θt(x) = min
y≥x

{Kδ(y − x) + c(y − x) + g(y) + γED[θt+1(y − D)]}

entory level xin each period t. Our goal throughout this section will be to use

the structure of (4.81) toshow that the optimal actions follow the policies we



have conjectured are optimal .4.5.1 Zero Fixed Costs: Base-St

show annotation

4.5.1 Zero Fixed Costs: Base-Stock Policies

Fixed Costs: Base-Stock Policies We first consider the case in which K = 0

and prove that—regardless of the horizonlength—a base-stock policy is
always optimal . These results date back to Kar

show annotation

Single Period:

weʼll consider the special case in which T = 1 and K = 0. Weʼll also assume that
the terminal cost function (i.e., θt+1(x) = 0, see Section 4.3.3) is equal to 0.

Then, the optimal cost reduces to:

θ(x) = min
y≥x

{c(y − x) + g(y)}

We cam rewrite θ(x) as

θ(x) = min
y≥x

{H(y) − cx}

where

H(y) = cy + g(y)

Since we are calculating θ(x) for fixed x, we see that the optimal decision can be

found by minimizing H(y) over y ≥ x, that is, starting at y = x, we want to
minimize H(y) looking only “to the right” of x.

If H(y) is convex, we can have:

a base-stock policy is optimal. And H(y) is convex because g(y) is convex,so
we have now sketched the proof of the following theorem. SyH(y)(a) H(y)

If x < S, then the optimal strategy is to set y = S

if x ≥ S, the optimal strategy is to do nothing, to set y = x. In other words,

the optimal policy is a base-stock policy.



convex; base-stoc

show annotation

cal shapes of the function H(y). Theorem 4.10 A base-stock policy is optimal

for the single-period problem with no fixedcosts. What if H(y) is nonconvex?
(This

show annotation

Finite Horizon:

IC REVIEW4.5.1.2 Finite Horizon It was simple to prove that H(y) is convex,
and therefore thata base-stock policy is optimal, for the single-period

problem . Our main goal in this sectionw
show annotation

4.5.2 Nonzero Fixed Costs: (s,S) Policies

nzero Fixed Costs: (s,S)Policies We now allow K 6= 0 and prove that an (s,S)
policy is optimal. We will present formalproofs fo

show annotation

4.6 Lost Salse

(See Zheng(1991).)4.6 LOST SALES Throughout this chapter, we have
assumed that unmet demands are backordered. In thissection, we assume

instea
show annotation

re backordered. In thissection, we assume instead that they are lost. The
distinction is only important when T > 1.(When T = 1, unmet demands can

only be lost.) 4.6.1 Zero Lead TimeIn this sect
show annotation

4.6.1 Zero Lead Time

ssume that the lead time L = 0. First consider the case in whichK = 0. In the
finite-horizon model, the DP recursion (4.36) changes only slightly :θt(x) =



miny≥x{c(y −x) + g(y) +

show annotation

θt(x) = min
y≥x

{c(y − x) + g(y) + γED[θt+1(y − D)]+}

Note: the positive part of y − D to reflect the fact that the inventory level cannot

become negative.

hout modification.LOST SALES 137 A base-stock policy is still optimal for the
infinite-horizon model. Under the average-cost criterion (γ = 1) with lost

sales, it is no longer true that we or

show annotation

5. Stochastic Inventory Models: Continuous
Review

5.1 (r,Q) Policies

TINUOUS REVIEW5.1 (r,Q) POLICIES In this chapter, we consider a setting

similar to the economic order quantity (EOQ) model(Section 3.2) but with
stochastic demand. The mean demand per year is λ.

show annotation

The mean demand per year is λ. The inventory position is monitored

continuously, and orders may be placed at any time. There is a deterministic
lead time L(≥ 0). Unmet demands are backordered .If the demand has a

continuous
show annotation

. Unmet demands are backordered. If the demand has a continuous
distribution, then the inventory level decreases smoothlybut randomly over

time, with rate λ, as in Figure 5.1. (Think of liq
show annotation

(r,Q) Policy:



sson process, as in Section 5.5. Weʼll assume the firm follows an (r,Q) policy:

When the inventory position reaches acertain point (call it r), we place an
order of size Q. L years later, the order arrives . In theintervening time, the in

show annotation

and, or wemay have stocked out. Note that the inventory level (solid line in

Figure 5.1) and inventoryposition (dashed line) differ from each other during
lead times but coincide otherwise. An(r,Q) policy is known to be o

show annotation

Differing from the EOQ model, which has a single decision variable Q, the (r,Q)

Policy has two decision variables: Q (the order quantity, sometimes called the
batch size) and r (the reorder point)

er (r,Q) policy.reorder point). Our goal is to determine the optimal r and Q to
minimize the expected costper year. In a continuous-review setting,

show annotation

or for periodic-review systems, since in either case theinventory position may

fall strictly below the reorder point before a replenishment order isplaced. In



this chapter, we will focus f

show annotation

5.2 Exact (r,Q) Problem With Continuous Demand
Distribution

ND DISTRIBUTIONIn this section, we introduce an exact model for systems

with continuous demand distribu-tions. We first formulate the expected cost
function and then derive optimality conditionsfor it .We continue to consider

the usu
show annotation

The usual costs:

5.2.1 Expected Cost Function

ime.5.2.1 Expected Cost Function Our first step is to derive an exact
expression for the expected cost as a function of r and Q. We place orders,

on average, eve
show annotation

First, we place orders, on average every Q/λ years. There the expected fixed
cost is given by Kλ/Q.

If the inventory position at time t is given by IP(t), then the inventory level at
time t + L is given by:

IL(t + L) = IP(t) − (t, t + L]

Fixed cost: K ≥ 0

Purchase cost: c ≥ 0

Holding cost: h > 0

Stockout cost: p > 0

D: the lead-time demand (运输期间的需求), a random variable with mean μ
and variance σ2, pdf f(d) and cdf F(d)



As in the periodic-review case, we can drop the time indices in steady state and

write:

IL = IP − D

where D is the lead-time demand.

of stochasticlead-time settings. Once we determine the distribution of IP, the

(unconditional) expected inventory costthen follows from the law of total
expectation. In particular, let ̄g(x) be the

show annotation

Let ḡ(x) be the rate at which the inventory cost accrues when IL = x:

ḡ(x) = hx+ + px−

Note: g(⋅) is a rate because the inventory level is changing continuously over
time, given in units of money per year. Then the expected inventory cost per

year is:

where

g(y) = hE[(y − D)+] + pE[(D − y)+]

g(y) is the rate at which the expected inventory cost accrues at time t + L when

the inventory position at time t equals y.

e itsoptimizer, given by (4.17). It remains to determine the distribution of IP .

By the definition of an (r,Q) policy, we know that IP  takes values only in
[r, r + Q]. It turns out that IP has a very

show annotation

在⼀些简单例⼦中，IP  可以是简单的分布，如均匀分布。因此，我们可以⽤如下积

分形式计算 期望损失：

E[ inventory cost ] = EIL[ḡ(IL)]

= EIP [EIL∣IP [ḡ(IL)]]
= EIP [ED[ḡ(IP − D)]]

= EIP [g(IP)]



E[inventory cost] =
1

Q
∫

r+Q

r

g(y) d y

Combining the expected inventory cost and the expected fixed cost Kλ/Q, we

have the expected total cost per year:

g(r,Q) =
Kλ + ∫ r+Q

r g(y) d y

Q

eng (1992) proves the following: Lemma 5.1 g(r,Q) is jointly convex in r and Q.
Proof. LetI(r,Q) = 1Q∫ r+QrE[(y

show annotation

r,Q) is proven byZipkin (1986a). In what follows, we use the expected cost

expression (5.7) to derive optimality conditionsfor r and Q by first fixing Q
and finding the optimal corresponding r, and then optimizingover Q .

Although these conditions tell
show annotation

5.2.2 Optimality Conditions

) be the optimal r for agiven Q. Lemma 5.2 For any Q > 0, r = r(Q) if and only

if g(r) = g(r + Q). (5.9)Proof. Fol

show annotation

Lemma For any Q > 0, r = r(Q) if and only if

g(r) = g(r + Q)

r, due to the convexity of g(y). The motivation behind this result is that,

during one replenishment cycle, we need topass through all of the inventory
positions in [r,r + Q] , and we spend an equal amount o
show annotation

Theorem (r,Q) minimize g(r,Q) if and only if:

g(r,Q) = g(r + Q) = g(r)



5.3 Approximations for (r,Q) Problem With
Continuous Distribution

5.3.1 Expected-Inventory-Level Approximation

ed-Inventory-Level Approximation The first approximation we discuss is

probably the best known and most widely coveredapproximation to find r and
Q. (Unfortunately, it is also one o

show annotation

nts byHadley and Whitin (1963). We call this the expected-inventory-level

(EIL) approximation,for reasons that will become clear shortly .The approach
relies on the foll

show annotation

that will become clear shortly. The approach relies on the following two

simplifying assumptions to make the modeltractable: • Simplifying
Assumption 1 (SA1)

show annotation

Two assumptions:

�. Simplifying Assumption 1 (SA1): Incur holding costs at a rate of h ⋅ IL per

year, where IL is the inventory level, whether IL is positive or negative.

�. Simplifying Assumption 2 (SA2): The stockout cost is charged once per

unit of unmet demand, not per year.



The costs:

L+], and the two are not equal. That is why we refer to this as the “expected-

inventory-level” approximation. The problem is more difficult without SA1
because of the nonlinearity introduced by the [⋅]+ operator. Aspreviously
noted, the EIL app

show annotation

The expected on-hand inventory when the order arrives:

s = r − λL

The average inventory level:

s +
Q

2
= r − λL +

Q

2

�. By SA1, the expected holding cost per year is:

h(r − λL +
Q

2
)

Note: this expression is only approximate, since that we are calculating the
expected holding cost as h ⋅ E[IL]+ (provided that E[IL] > 0).



=∫ ∞r(d −r)f(d)dd = n(r), (5.14) where n(r) is the loss function for the lead-

time demand distribution . (See Section 4.3.2.2or Section

show annotation

The expected number of stockout per year is

n(r)

E[T ]
=

λn(r)

Q

r year is simplypλn(r)Q . (5.15) Note that we are assuming that r > 0, which is
a reasonable assumption in practice . (Thereason we make simplifying

show annotation

The total cost per year:

g(r,Q) = h(r − λL +
Q

2
)+

Kλ

Q
+

pλn(r)

Q

Solution:

�. Fixed cost : Kλ
Q

Stockout cost :

E[(D − r)+] = ∫
∞

r

(d − r)f(d) d d = n(r)

�. then by SA2, the expected stockout cost per year is simply:

pλn(r)

Q

For Q :

( )



5)), sor = F−1(1 − Qhpλ). (5.18) Now we have two equations with two

unknowns, but these equations cannot be solvedin closed form. The

approach given in Algorithm
show annotation

cannot be solvedin closed form. The approach given in Algorithm 5.1 first

sets Q equal to the EOQ quantity,i.e., ignoring the demand randomness. It

then proceeds iteratively, s
show annotation

le 5.1.  5.3.1.3 Service Levels One major limitation of (r,Q) policies as

formulated aboveis that p is very hard to estimate . But there is a close

relations
show annotation

5.3.2 EOQB Approximation

139.1.  5.3.2 EOQB Approximation There are important connections between

the EOQ problem with planned backorders (EOQB; Section 3.5) and (r,Q) po
show annotation

∂g

∂Q
=

h

2
−

Kλ

Q2
−

pλn(r)

Q2
= 0

⟺
1

Q2
[Kλ + pλn(r)] =

h

2

⟺ Q2 =
2[Kλ + pλn(r)]

h

Q = √ 2λ[K + pn(r)]

h

For r :

∂g

∂r
= h +

pλn′(r)

Q
= 0

⟺ h +
pλ(F(r) − 1)

Q
= 0

r = F −1(1 −
Qh

pλ
)



5.3.3 EOQ + SS Approximation

5.2.  5.3.3 EOQ+SS Approximation Another common approximation for r and

Q is to convert the inventory-cost parametersinto a service level and then to
use the approach described in Section 5.3.1.3 for type-1service level

constraints . In particular,Q =√2KλhAPPROXIM
show annotation

5.4 Exact (r,Q) Problem With Continuous
Distribution: Properties of Optimal r and Q

ON:PROPERTIES OF OPTIMAL r AND Q We now return to the exact model
from Section 5.2. We have two main goals in thissection . First, we will

analyze the pro
show annotation

to the EOQBmodel and prove that, if the EOQB model is used as a heuristic
for optimizing r and Q, asdiscussed in Section 5.3.2, the resulting error has a

fixed bound. We do this by treating theEOQB

show annotation

Let G(Q) equal the expected cost per year as a function of Q, assuming r is set

optimally for that Q,

G(Q) = g(r(Q),Q)

Let H(Q) be the value of g(y) at y = r(Q), or r(Q) + Q

H(Q) = g(r(Q)) = g(r(Q) + Q)

Then we have

�. We will analyze the properties of optimal solutions (and their costs) for

(r,Q) policies, by deriving optimality conditions for r and Q and then
providing properties of the resulting optimal solutions.

�. We will compare (r,Q) policies to the EOQB model and prove.



G(Q) =
Kλ + ∫

Q

0 H(y) d y

Q

6. Multi-echelon Inventory Models
.1 INTRODUCTIONIn this chapter, we study inventory optimization models for
multiechelon (or multistage)systems with shipments made among the stages

. There are two common ways to i
show annotation

6.1 Introduction

There are two common ways to interpret the stages or nodes in the multiechelon

system:

hipments of goods. For example, the stages in Figure 6.1(a)may represent

the following physical locations: a supplier in China, a factory inCalifornia, a
warehouse in Chicago, and a retailer in Detroit (respectively). 2. Stages
represent processes th

show annotation

ns betweensteps in the process. For example, the stages in Figure 6.1(a) may
represent thefollowing processes: manufacturing, assembly, testing, and

packaging. These fourfunctions may take place in four different locations or
all within the same building —it is largely irrelevant from t
show annotation

8. Facility Location Models

8.1 Introduction

�. Stages represent locations in a supply chain network, and links among the
stages represent physical shipments of goods.

�. Stages represent processes that the product must undergo during
manufacturing, assembly, and/or distribution.



LOCATION MODELS8.1 INTRODUCTION One of the major strategic decisions

faced by firms is the number and locations of factories,warehouses, retailers,
or other physical facilities . This is the purview of a large

show annotation

as facility location problems. The key trade-off in most facility

locationproblems is between the facility cost and customer service. If we
open a lot of facilities(

show annotation

lity cost and customer service. If we open a lot of facilities(Figure 8.1(a)), we

incur high facility costs (to build and maintain them), but we can providegood
service since most customers are close to a facility. On the other hand, if we

openfe
show annotation

More facilities

Few facilities



a facility. On the other hand, if we openfew facilities (Figure 8.1(b)), we

reduce our facility costs but must travel farther to reachour customers (or
they to reach us). Most (but not all) location prob

show annotation

customers (or they to reach us). Most (but not all) location problems make
two related sets of decisions: (1) where tolocate, and (2) which customers

are assigned or allocated to which facilities. Therefore,facility location prob

show annotation

allocated to which facilities. Therefore,facility location problems are also
sometimes known as location–allocation problems .A huge range of
approaches has

show annotation

ing facility location decisions. These differ in terms of how they model facility
costs (for example, some include the costsexplicitly, while others impose a

constraint on the number of facilities to be opened) andhow they model
customer service (for example, some include a transportation cost,

whileothers require all or most facilities to be covered—that is, served by a
facility that is withinsome specified distance). Facility location problems



come

show annotation

ion as well as later extensions. In addition to supply chain facilities such as

plants and warehouses, location modelshave been applied to public sector
facilities such as bus depots and fire sta

show annotation

notreally “facilities” at all. In addition, many operations research problems

can be formulatedas facility location problems or have subproblems that
resemble them . Facility locationproblems are

show annotation

th theoretical and applied work. In this chapter, we will begin by discussing a

classical facility location model, theuncapacitated fixed-charge location
problem (UFLP) , in Section 8.2. The UFLP and i

show annotation

the UFLP), and in Section 8.4, we discuss cover-ing models (including the p-

center, set covering, and maximal covering problems) . Webriefly discuss a
variety of

show annotation

8.2 The Uncapacitated fixed-charge Location
Problem

8.2.1 Problem Statement

N PROBLEM8.2.1 Problem Statement The uncapacitated fixed-charge

location problem (UFLP) chooses facility locations inorder to minimize the
total cost of building the facilities and transporting goods fromfacilities to

customers. The UFLP makes location decisio
show annotation

oreven fire stations and homes. Sometimes itʼs also useful to think of an
upstream echelon,again with fixed location(s), that serves the DCs. Each



potential DC location has a

show annotation

ocation(s), that serves the DCs. Each potential DC location has a fixed cost

that represents building (or leasing) thefacility; the fixed cost is independent
of

show annotation

is270 FACILITY LOCATION MODELSa transportation cost per unit of product
shipped from a DC to each customer. There isa single product. The D

show annotation

s assumption in Section 8.3.1.) The problem is to choosefacility locations to
minimize the fixed cost of building facilities plus the transportationcost to

transport product from DCs to customers, subject to constraints requiring
everycustomer to be served by some open DC .As noted above, the key

trade-o
show annotation

er to be served by some open DC. As noted above, the key trade-off in the
UFLP is between fixed and transportation costs .If too few facilities are open,

show annotation

8.2.2 Formulation

Define the following notations:

Sets:

Fixed cost

Transportation cost

Objective

I : set of customers



Note : The transportation costs cij might be of the form k× distance for some
constant k (if the shipping company charges k per mile per unit) or more

arbitrary (for example, based on airline ticket prices, which are not linearly
related to distance)

linearly related to distance). In the former case,distances may be computed
in a number of ways: • Euclidean distance: The distan

show annotation

Distances:

based on airline ticket prices. In general, we wonʼt be concerned with how

transportation costs are computed—weʼll assume they are given to us
already as the parameters cij .The UFLP is formulated as follo

show annotation

The UFLP is formulated as follows:

min ∑
j∈J

fjxj +∑
i∈I

∑
j∈J

hicijyij

J: set of potential facility locations

Parameters

hi : annual demand of customer i ∈ I

cij : cost to transport one unit of demand from facility j ∈ J to customer
i ∈ I

fj : fixed annual cost to open a facility at site j ∈ J

Decision Variables

xj : 1 if facility j is opened, 0 otherwise

yij : the fraction of customer i's demand that is served by facility j

Euclidean distance:

Manhattan or rectilinear metric

Great circle

Highway/network

Matrix



subject to

Note : in the discussion that follows, weʼll use z∗ to denote the optimal objective
value of (UFLP).

anne (1964) and Balinski(1965). The objective function (8.3) computes the
total (fixed plus transportation) cost. Inthe discussion that follows,

show annotation

together ensure that 0 ≤yij ≤1. In fact, it is always optimalto assign each

customer solely to its nearest open facility. (Why?) Therefore, there alwaysex
show annotation

objective value is no greater. It is important to understand that theIPs have
the same optimal objective value, but the LPs have different values—one

providesa weaker LP bound than the other. The UFLP is NP-hard (Garey and
J

show annotation

exact algorithmsand heuristics. Some of the earliest exact algorithms involve

simply solving the IP usingbranch-and-bound . Today, this would mean
solving

show annotation

o solve problems ofmodest size. Therefore, a number of other optimal

approaches were developed. Two ofthese—Lagrangian relaxation and a
dual-ascent method called DUALOC—are discussedin Sections 8.2.3 and

8.2.4, respectivel y. Many other IP techniques, suc
show annotation

8.2.3 Lagrangian Relation

∑
j∈J

yij = 1 ∀i ∈ I

yij ≤ xj ∀i ∈ I, ∀j ∈ J

xj ∈ {0, 1} ∀j ∈ J

yij ≥ 0 ∀i ∈ I, ∀j ∈ J



Relaxation8.2.3.1 Introduction One of the methods that has proven to be

most effective forthe UFLP and other location problems is Lagrangian
relaxation, a standard technique forinteger programming (as well as other

types of opti
show annotation

ARGE LOCATION PROBLEM 273behind Lagrangian relaxation is to remove a
set of constraints to create a problem thatʼseasier to solve than the original.

But instead of just removing th
show annotation

Actually, it is to construct a convex function, then let is derivative to zero.

ethem in the objective function by adding a term that penalizes solutions for
violating theconstraints . This process gives a lower bou

show annotation

on the optimal objective value. When the upper and lower bounds are close

(say, within1%), we know that the feasible solution we have found is close to
optima l.For more details on Lagrangian
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are relaxed.8.2.3.2 Relaxation We relax constraints (8.4), removing them from

the problem andadding a penalty term to the objective function: ∑i∈Iλi��1
−∑j∈Jyij��The λi are c

show annotation

∑
j∈J

λi(1 − yij)

The λi are called Lagrange multipliers.

present the vector of λi values. For now, assume λ is fixed. Relaxing

constraints (8.4) gives us the following problem,known as the Lagrangian
subproblem: (UFLP-LRλ) minimize ∑j∈Jfjxj + ∑

show annotation



The Lagrangian subproblem :

subject to

.How can we solve this problem? It turns out that the problem is quite easy to
solveby inspection—we donʼt need to use an IP solver or any sort of

complicated algorithm. 274 FACILITY LOCATION MODELSSupp
show annotation

ginal problem:zLR(λ) ≤z�. (8.16) The point of Lagrangian relaxation is not to
generate feasible solutions, since the solutionsto (UFLP-LRλ) will generally

be infeasible for (UFLP). Instead, the point is to generategood (i.e., high)
lower bounds in order to prove that a feasible solution weʼve foundsome

other way is good. For example, if weʼve found a f
show annotation

8.2.4 The DUALOC Algorithm

8.3 Other Minisum Models

. 2006).8.3 OTHER MINISUM MODELS The UFLP is an example of a minisum

location problem. Minisum models are so calledbecause their objective is to
minimize a sum of the costs or distances between customers andtheir

assigned facilities (as well as possibly other term
show annotation

ch as fixed costs). In contrast, covering location problems are more
concerned with the maximum distance, with the goalof ensuring that most or

all customers are located close to their assigned facilities .296 FACILITY

min∑
j∈J

fjxj +∑
i∈I

∑
j∈J

hicijyij +∑
j∈J

λi(1 − yij)

= ∑
j∈J

fjxj +∑
i∈I

∑
j∈J

(hicij − λi)yij +∑
j∈J

λi

yij ≤ xj ∀i ∈ I, ∀j ∈ J

xj ∈ {0, 1} ∀j ∈ J

yij ≥ 0 ∀i ∈ I, ∀j ∈ J



LOCATION MODELSAt
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eneralizing, it can be said that minisum models are more commonlyapplied in

the private sector, in which profits and costs are the dominant concerns,
andcovering models are most commonly applied in the public sector, in

which service, fairness,and equity are more important . For further
discussion of this
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8.3.1 The Capacitated Fixed-Charge Location Problem

ion in many practical settings. The UFLP can be easilymodified to account for

capacity restrictions; the resulting problem (not surprisingly) iscalled the
capacitated fixed-charge location problem, or CFLP. Suppose vj is the

maximumdemand
show annotation

8.4 Covering Models

many other guidelines, says that fire departments should have the objective

of arriving to afire within 4 minutes of receiving a call (National Fire
Protection Associ

show annotation

isum models can helpmuch with, s ince the optimal solutions to those

problems may assign some customers tovery distant facilities if it is cost
effective to do so . Instead, we need to use the no

show annotation

it is cost effective to do so. Instead, we need to use the notion ofcoverage,

which indicates whether a given customer is within a prespecified distance,
orcoverage radius, of an open facility. For example, Figure 8.11 shows t

show annotation



om the equator.In this section, we discuss three seminal facility location

models that use coverage todetermine the quality of the solution . The first,
the set covering lo
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8.4.1 The Set Covering Location Problem

Covering Location Problem (SCLP) In the set covering location problem
(SCLP), we are required to cover every demand node;the objective is to do

so with the fewest possible number of facilities. The SCLP was
firstformulated in

show annotation

Parameters:

∈I (if it is open), 0 otherwise The coverage parameter aij can be derived from

a distance or cost parameter such as cij in the UFLP, for example:aij ={1, if cij
≤r0
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Then, the SCLP can be formulated as follows:

min∑
j∈J

xj

subject to

�. Set covering location problem (SCLP): locates the minimum number of

facilities to cover every demand node

�. maximal covering location problem (MCLP): covers as many demands as

possible while locating a fixed number of facilities.

�. p-center problem: locates a fixed number of facilities to minimize the

maximum distance from a demand node to its nearest open facility.

aij = 1 : if facility j ∈ J can cover customer i ∈ I (if it is open), 0 otherwise.

∑



82) are integrality constraints. Sometimes we wish to minimize the total fixed

cost of the opened facilities, rather than the total number, in which case the
following objective function is appropriate :minimize ∑j∈Jfjxj. (8.83)The SC
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min∑
j∈J

fjxj

8.4.2 The Maximal Covering Location Problem

han 88.7%, as we will see below. The maximal covering location problem
(MCLP) seeks to maximize the total number ofdemands covered subject to a

limit on the number of open facilities. It was introduced byChurch and
show annotation

∑
j∈J

aijxj ≥ 1 ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J


