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Decision is a risk rooted in the courage of being free.
— Paul Tillich

Lectures:

e o
1. Introduction

1.1 The Evolution of Supply Chain Theory

Supply chains used to be viewed,at least by
some managers, as “necessary evils.”
show annotation

By the end of the last century, however, the
purpose of the supply chain had begunto change as some firms discovered
that supply chains could be a source of competitiveadvantage, rather than
simply a cost driver.
show annotation

The final chapter of this book is devoted to
exploring how the tools of supplychain theory are used in a few of these
application areas—electricity systems, health care,and public sector
operations.
show annotation

1.2 Definiton and Scope

Perhaps the mostauthoritative definition
comes from the Council of Supply Chain Management
Professionals(CSCMP), who define supply chain management as follows




show annotation

Supply chain management encompasses
the planning and management of all activitiesinvolved in sourcing and
procurement, conversion, and all logistics management activi-ties.
Importantly, it also includes coordination and collaboration with channel
partners,which can be suppliers, intermediaries, third party service
providers, and customers. Inessence, supply chain management integrates
supply and demand management withinand across companies

show annotation

These practices include a huge range of
tasks, suchas forecasting, production planning, inventory management,
warehouse location, supplierselection, procurement, and shipping.

show annotation

The terms “logistics” and “logistics
management” are closely related to “supply chainmanagement,” and it can
be difficult to draw a clear distinction.
show annotation

“supply chain management”
includeslogistics, as well as nonmovement activities such as inventory
management and procure-ment.
show annotation

Supply chains are often represented
graphically as a schematic network that illustratesthe relationships between
its elements
show annotation

A location in the network is referred toas a stage
or node. The links between stages represent some type of flow—typically,



theflow of goods, but sometimes the flow of information or money

show annotation

The portion of the supplychain from which
products originate (the left-hand portion in Figure 1.1) is referred to
asupstream, while the demand end is referred to as downstream.

show annotation

But today’s supply chains more
closelyresemble the complex network in Figure 1.1, each echelon may have
dozens, hundreds,or even thousands of nodes.

show annotation

The ideal supply chain management model
would globally optimize every aspect of thesupply chain, but such a model is
impossible both because of the difficulties in modelingsome aspects of the
supply chain mathematically and because the resulting model wouldbe too
large and complex to solve
show annotation

1.3 Levels of Decision-making in Supply Chain
Management

It is convenient to think about three
levels of supply chain management decisions: strategic,tactical, and
operational.
show annotation

Three level of supply chain management decisions:

strategic

tactical



operational

2.Forecasting and Demad Modeling

2.1 Introduction

Demand forecasting is one of the
most fundamental tasks that a business must perform

show annotation

Improving customer service levels and by reducing costs related to supply—
demand mismatches.

biased or otherwise inaccurate forecasting results in inferior decisions and
thus undermines business performance.

The goal of the forecasting models
discussed in this chapter is to estimate the quantityof a product or service
that consumers will purchase
show annotation

Most classical forecasting techniquesinvolve
time-series methods that require substantial historical data. Some of these
methodsare designed for demands that are stable over time

show annotation

However, products today have shorter and
shorter life cycles, in part driven by rapidtechnology upgrades for high-tech
products. As a result, firms have much less historicaldata available to use for
forecasting, and any trends that may be evident in historical datamay be
unreliable for predicting the future

show annotation




Large quantities of historical data available.

n Section 2.4, we discuss more recent
approaches to forecastingdemand using machine learning when we have
large quantities of historical data available
show annotation

Inadequate historical data

n Sections 2.5—2.8, we discuss several methods
that can be used to predict demands for newproducts or products that do
not have much historical data.
show annotation

To distinguish these methodsfrom classical
time-series—based methods, we call them demand modeling techniques.

show annotation

techniques:
Quantitative

They all involve mathe-matical models with
parameters that must be calibrated.
show annotation

Some popular methods

In contrast, some popular methodsfor
forecasting demand with little or no historical data, such as the Delphi
method, rely onexperts’ qualitative assessments or questionnaires to develop
forecasts.
show annotation




Demand processes may exhibit various forms of nonstationarity over time.
These include the following:

: Demand consistently increases or decreases over time.
: Demand shows peaks and valleys at consistent intervals.

: Demand goes through phases of rapid growth, maturity,
and decline.

Moreover, demands exhibit random error—
variations that cannot be explained or predicted—and this randomness is
typically superimposed on any underlying nonstationarity

show annotation

superimpose: vi. {FEZ {FE N

Classical forecasting methods
use prior demand history to generate a forecast.

show annotation

assume that pastpatterns of demand will
continue into the future, that is, no trend is present.

show annotation

As a result, these techniques are best used for mature products with a large
amount of historical data

On the other hand, regression analysis and
double and triple exponential smoothing canaccount for a trend or other
pattern in the data.
show annotation

2.2.1 Moving Average



The moving average method calculates the
average amount of demand over a given intervalof time and uses this
average to predict the future demand.

show annotation

The definition of Moving Average:
Dt =1+ €

where I is the mean or "base" demand and € is a random error term.

A moving average forecast of order N uses
the most recent observed demands.
show annotation

That is, the forecast is simply the
arithmetic mean of the previous N observations. This isknown as a simple
moving average forecast of order N.
show annotation

2.2.2 Exponential Smoothing

Exponential smoothing is a technique that
uses a weighted average of all past data as thebasis for the forecast.

show annotation

: the demand process is :
: there is a trend;
: account for trends and seasonality.

These methods all requireuser-specified

parameters that determine the relative weights placed on recent and
olderobservations when predicting the demand, trend, and seasonality




show annotation

These three weights arecalled, respectively,
the smoothing factor, the trend factor, and the seasonality factor

show annotation

Single Exponential Smoothing

The single exponential smoothing forecast
includes all pastobservations,
show annotation

These weights can be approximated with an
exponential function f(i) = ae "
show annotation

Double Exponential Smoothing

Double exponential smoothing can beused
to forecast demands with a linear trend.
show annotation

It places a weight of 3 on the most recent
estimate of the slope(obtained by taking the difference between the two
most recent base signals) and a weight of 1 — 3 on the previous estimate

show annotation

Triple Exponential Smoothing

Triple exponential smoothing can be usedto
forecast demands that exhibit both trend and seasonality.

show annotation




: the demand series has a pattern that repeats every N periods for
some fixed N.

The idea behind smoothing with trend and
seasonality is basically to “de-trend” and “de-seasonalize” the time series by
separating the base signal from the trend and seasonalityeffects

show annotation

Initializing triple exponential smoothing is a
bit trickier than for single or double expo-nential smoothing.

show annotation

To do so, we usually need at least two entire
seasons’ worth of data(2N periods), which will be used for the initialization
phase. One common method is toinitialize the slope as

show annotation

In other words, we take the per-period
increase in demand between periods 1and N + 1, and the per-period
increase between periods 2 and N + 2, and so on,; and then we take the
average over those N values.
show annotation

2.2.3 Linear Regression

Historical data can also be used to forecast
demands by determining a cause—effect rela-tionship between some
independent variables and the demand
show annotation

In linear regression, the model specification
assumes that the dependent variable, Y, is alinear combination of the




independent variables.
show annotation

To build a regression model, we need
historical data points—observations of both theindependent variable(s) and
the dependent variable.
show annotation

2.3 Forecast Accuracy

2.3.1MAD, MSE and MAPE

Measurements:

MAD: Mean Absolute Deviation
MSE: Mean Squared Error
MAPE: Mean Absolute Percentage Error
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If the mean of the forecast error, ue,equals O,
we say the forecasting method is unbiased: It does not produce forecasts
that aresystematically either too low or too high.

show annotation

MAD is sometimes preferred to MSE in real
applicationsbecause it avoids the calculation of squaring, though modern
spreadsheet and statisticspackages can compute either performance
measure easily.
show annotation




2.4 Machine Learning in Demand Forecasting

2.4.1 Introduction

The huge volume of data generated every
day, the high velocityof data creation, and the large variety of sources all
make today’s business informationenvironment different than it was only a
decade ago.
show annotation

Compared with classical
forecastingmethods such as the time series methods discussed in Section
2.2, machine learning modelsoften significantly increase prediction accuracy.

show annotation

2.4.2 Machine Learning

machine learning (ML) refers to a set of
algorithms that can learn from andmake predictions about data

show annotation

Both techniques fall into the overall field of
data science, which covers a wider range oftopics, including database
design and data visualization techniques.
show annotation

In contrast, unsupervised learning explores
relationships and structures withinthe data without any known “ground truth”
labels or outputs.
show annotation

Common supervised learning methods
include linear regression (and its nonlinear ex-tensions), kernel methods,




tree-based models, support vector machines (SVMs), and neuralnetworks

show annotation

Graphical models involving hidden Markov
models (or, in their simplest form,mixture models) and Markov random fields
also receive considerable attention.
show annotation

Linear regression
Tree-based models

The trees used for these two types of
problems are referred to as regression treesand classification trees,
respectively. In demand forecasting, regression trees have receivedmore
attention because of their simplicity and interpretability

show annotation

However, in practice, the number of possible
partitionsmay be too large to enumerate. Therefore, it is common to use a
binary splitting methodcalled recursive partitioning, which generates two
regions from the original region at eachiteration.

show annotation

researchershave developed methods that
combine several trees to enhance the prediction performance.These include
random forests, bagging, and boosting.
show annotation

stock-keeping unit (SKU) sales

show annotation




Support vector machines

SVMs are designed to partition the space
ofinput variables into two regions, i.e., to make a binary prediction about a
given outputbased on which region a given input vector falls into.

show annotation

SVMs can be generalized to allow
nonlinearities by mapping the input space into ahigh-dimensional space
using kernel functions.
show annotation

Popular choices ofkernel functions include
polynomials and radial basis functions (RBFs)

show annotation

Neural networks

A neural network consists of several nodes,
also calledneurons, arranged into layers.
show annotation

The key challenge in fitting a neural network
model is the determination of the weights «y,, and «.,,. This is usually done
using some sort of algorithm that modifies the weights as the network
“learns” right and wrong answers.
show annotation

Suchdeep neural networks have led to huge
advances in machine learning, with great successesnot only in classification
and prediction problems such as image processing and demandforecasting,



but also, when coupled with reinforcement learning (RL), in solving
decisionproblems such as those in board games

show annotation

2.5 Demand Modeling Techniques

they need tounderstand the life cycles and
demand dynamics of their products
show annotation

It turns outthat classical forecasting
techniques did not work well with the company’s highly variable,short-life-
cycle products, so the firm introduced products at the wrong times in the
wrongquantities.
show annotation

2.6 Bass Diffusion Model

The sales patterns of new products
typically go through three phases: rapid growth, maturity,and decline

show annotation

The premise of the Bass model is that
customers can be classified into innovatorsand imitators.

show annotation

Thegoal of the Bass model is to characterize
this behavior in an effort to forecast the demand

show annotation

Moreover, it attempts topredict two
important dimensions of a forecast: how many customers will eventually




adoptthe new product, and when they will adopt

show annotation

Knowing the timing of adoptions is
importantas it can guide the firm to smartly utilize resources in marketing the
new product.
show annotation

2.6.1 The Model

It assumes that P(t), the probability that a given buyer makes an initial purchase
at time t given that she has not yet made a purchase, is a linear function of the
number of previous buyers, that is,

P(t)=p+ %D(t)

where D(t) is the by time t. ¢ and m represent the
and the

This equation include two influence factors:

coefficient of innovation, denoted p, which is a constant, independent of
how many other customers have adopted the innovation before time t.

the "contagion" effect between the innovators and the imitators, denoted
-L D(¢t), which is proportional to the number of customers who have already
adopted by time t.

Our preference would be to have a closed-form
expressionfor D(t). Fortunately, this is possible:

show annotation

In summary, by varying the values of p and q,
we can represent manydifferent patterns of demand diffusion




show annotation

2.6.2 Discrete Time Version

A discrete-time version of the Bass model
is available.
show annotation

2.6.3 Parameter Estimation

The Bass model is heavily driven by the
parameters m, p, and q.
show annotation

However, because the Bass model is
typically used for new products, in most caseshistorical data are not available
to estimate the parameters.
show annotation

Instead, m is typically esti-mated
qualitatively, using judgment or intuition from management about the size of
themarket, market research, or the Delphi method

show annotation
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The parameters p and q tend to be relatively
consistent withina given industry, so these can often be estimated from the
diffusion patterns of similarproducts.
show annotation

2.6.4 Extensions



The original model has also been extendedin
a humber of ways.
show annotation

2.7 Learning Indicator Approach

Product life cycles are becoming
shorter and shorter, so it is difficult to obtain enoughhistorical data to
forecast demands accurately.

show annotation

Solution: leading indicators

One idea that has proven to work well
insuch situations is the use of leading indicators—products that can be used
to predict thedemands of other, later products because the two products
share a similar demand pattern
show annotation

The idea is first to group the products into
clusters so that all of the products within a clustershare similar attributes.

show annotation

Even though all of the products are on the
market simultaneously,the lag provides enough time so that supply chain
planning for the products in the clustercan take place based on the forecasts
provided by the leading indicator. Of course, correctlyidentifying the leading
indicator is critical.
show annotation

2.8 Discrete Choice Models

2.8.1 Introduction to Discrete Choice



In economics, discrete choice models involve
choices between two or more discrete alterna-tives

show annotation

The idea behind discrete choice models is to
build a statistical model that predictsthe choice made by an individual based
on the individual’s own attributes as well as theattributes of the available
choices.
show annotation

choice models are atthe aggregate
(population) level and assume that each decision-maker’s preferences
arecaptured implicitly by that model.
show annotation

Discrete choice models take many forms,
including binary and multinomial logit, binaryand multinomial probit, and
conditional logit.
show annotation

For a discrete choice model, the setof
alternatives in the choice set must be mutually exclusive, exhaustive, and
finite.
show annotation

Discrete choice models usuallyassume that the
decision-maker is a utility maximizer. That is, he will choose alternative iif and
only if Un; > Uyjforall j € 1,5+ i
show annotation

2.8.2 The Multinomial Logit Model



Next we derive the multinomial logit model.
(Refer to McFadden (1974) or Train (2009)for further details of the
derivation.) “Multinomial” means that there are multiple optionsfrom which
the decision-maker chooses
show annotation

3. Deterministic Inventory Models

3.1 Introduction to Inventory Modeling

These are all reasons that firms plan to hold
inventory. In addition, firms may holdunplanned inventory—for example,
inventory of products that have become obsolete soonerthan expected

show annotation

In fact, although we tend todiscuss
inventory models as though the firm is buying a product from an outside
supplier,most inventory models apply equally well to production systems,

show annotation

Mathematical inventory models can be
classified along a number of different dimensions:

show annotation

Mathematical inventory models can be classified along a number of different
dimensions:

Demand

Lead time
Review type
Planning horizon
Stockout type



Ensuring good service
Fixed cost
Perishability

Like all mathematical models, inventory
models must balance two competing factors—realism and tractability

show annotation

The goal of most inventory models is to
minimize the cost (or maximize the profit) of theinventory system.

show annotation

Four types of costs:

Holding cost
Fixed cost
Purchase cost
Stockout cost

Stockout cost. This is the cost of not
having sufficient inventory to meet demand, alsocalled the penalty cost or
stockout penalty
show annotation

There are several measures that we use to
assess the amount of inventory in the system atany given time.

show annotation

There are several measures that we use to assess the amount of inventory in the
system at any given time.

On-hand inventory (OH) refers to the number of units that are actually
available at the stocking location.



Backorders (BO) represent demands that have occurred but have not been
satisfied. Generally, it's not possible for the on-hand inventory and the
backorders to be positive at the same time

The inventory level (IL) is equal to the on-hand inventory minus backorders
inventory position (IP), which equals the inventory level plus items on order

the economic order quantity (EOQ)
model, perhaps the oldest and best-known mathematical inventory model
(Section 3.2), and some of its extensions; and thena periodic-review model

show annotation

The models discussed in this chapter are
sometimes known as economic lot size problems.

show annotation

i1l

3.2 Continuous Review: The Economic Order
Quantity Problem

3.2.1 Problem Statement

The economic order quantity (EOQ)
problem is one of the oldest and most fundamentalinventory models; it was
first introduced by Harris (1913). The goal is to determine theoptimal amount
to order each time an order is placed to minimize the average cost per year.

show annotation

Any optimal solution for the EOQ model has
two important properties:

show annotation




Any optimal solution for the EOQ model has two important properties:

Zero-inventory ordering (ZIO) property;
Constant order sizes.

A 2
=

Figure 3.2 EOQ inventory level curve.

T is the . meaning the amount of time between orders, and it relates
to the order quantity Q and X\ by the equation:

_Q
=1

3.2.2 Cost Function

We want to find the optimal Q to minimize
the average annual cost.
show annotation

he key trade-off is between fixed cost and
holdingcost: If we use a large @, we’ll place fewer orders and hold more
inventory (small fixedcost but large holding cost), whereas if we use a small
Q, we'll place more orders and holdless inventory (large fixed cost but small
holding cost).
show annotation




per year

Average Annual

where K is a fixed cost per order, h is an inventory holding cost per unit per
year. c is purchase cost per unit ordered.

The average inventory level in a cycle is Q/2,
so the average amount ofinventory per yearis Q/2 -1year = Q/2

show annotation

3.2.3 Optimal Solution

The optimal @ can be obtained by taking the
derivative of g(Q) and setting it to 0:

show annotation
dg(Q) KX h _0
aQ Q2
- h
. 2K\
Q* is the . Then, the optimal total cost is g(Q*) is:

9(Q") = V2KXh



Another way to see that the fixed and
holding costs are equal in the optimal solution isto note that the product of
the two terms in (3.3) i
show annotation

The ability to express g(QE) in closed form
allows us to learn about structuralproperties of the EOQ and related models,
such as the power-of-two policies discussed inSection 3.3, as well as to
embed the EOQ into other, richer models, such as the locationmodel with risk
pooling (LMRP) in Section 12.2
show annotation

make some statements about how the
solution changes asthe parameters change:
show annotation

Remember that the EOQ only reflects
costs, not revenues; the increased cost of large Awould be outweighed by
the increased revenue
show annotation

3.2.4 Sensitivity Analysis

Suppose the firm did not want to order Q*
exactly. For example, it might need to order in multiples of 10(Q = 10n), or it
might want to order every month (T = 1/12).

show annotation

: Suppose Q* is the in the EOQ model, then for
any Q > 0:

9(Q) :1<Q* Q)

0@y 2\q "¢

Theorem 3.2 ignores the per-unit cost c. If we
include the annual cost cAin the numeratorand denominator of (3.8), then the



percentage increase in cost would be even smaller

show annotation

3.2.5 Order Lead Times

What if the lead time was positive—say, L
years? Theoptimal solution doesn’t change—we just place our order L years
before it’s needed.
show annotation

It’s generally more convenient to express this
in terms ofthe reorder point (r).

show annotation

So how do we compute r? It should be equal to the amount of product
demanded during the lead time, or

r= AL
3.3 Power-of-two Policies

In this section, we discusspower-of-two
policies, in which the order interval is required to be a power-of-two
multipleof some base period.
show annotation

hen the power-of-two restriction says that
orders can beplaced every 1day, or every 2 days, or every 4 days, or every 8
days, and so on
show annotation

Wealready know that the EOQ model is
relatively insensitive to deviations from the optimalsolution from Theorem
3.2. Our goal is to determine exactly how much more expensive apower-of-
two policy is than the optimal policy
show annotation




he problem of finding optimalorder intervals
in this setting is one version of a problem known as the one
warehouse, multiretailer (OWMR) problem

show annotation

3.3.2 Error Bound

Theorem 3.3
show annotation

If T'is the optimal power-of-two order interval and T* is the
optimal (not necessarily power-of-two) order interval, then

) 3 106

f(T*) — 24/2

n other words, the cost of the optimal
power-of-two policy is no more than 6% greaterthan the cost of the optimal
(non-power-of-two) policy

show annotation

Hints for proof: the optimal power-of-two order interval 7’ must be in the interval
[%T*, \/§T*} . Since we don't know precisely where T falls in the range, so it is

only a bound that occurs on the endpoints of the range.

3.4 The EOQ With Quantity Discounts

It is common for suppliers to offer
discounts based on the quantity ordered
show annotation

The specificstructure for the discounts can
take many forms, but two types are most common: all-unitsdiscounts and
incremental discount

show annotation




3.4.1 All-Units Discounts

We can no longer ignore the purchase cost as
we did in (3.3). In fact, not only do we needto include the purchase cost
itself, but we must also account for the fact that the holdingcost typically
depends on the purchase cost
show annotation

Suppose we knew that the optimal order
quantity lies in region j. Then we would simplyneed to find the @ that
minimizes the EOQ cost function for region j:
show annotation

KX | icQ
Q 2
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Its minimizer is given by:

3.4.2 Incremental Discounts

We now turn our attention to incremental
discounts. The total cost function for region j is given by

show annotation

where

e(Q) = ci(bis1 — bi) + ¢;(Q — by)

1=0

Then, we can rewrite g;(Q) as
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j—1
Ccj = Z Ci (bi+1 — bi) — Cjbj
1=0

so the minimizer is given by
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with cost

gJ(Q*) = Cj)\ —|— % ‘|‘ \/2(K —|— Ej))\?:Cj
3.4.3 Modified All-Units Discounts

All-units discounts are somewhat
problematic because, for order quantities Q just to theleft of breakpoint j, it is
cheaper to order bj than to order Q
show annotation

This structure is sometimes known as the
modified all-units discount structure.
show annotation

A special case of the modified all-units
discount structure is the carload discount struc-ture, in which the bj are
equally spaced and cj is the same for all j.
show annotation




Unfortunately, modified all-units discount
structures are much more difficult to analyzethan the discount structures
discussed above.

show annotation

3.5 The EOQ with Planned Backorders

In this section, we discuss avariant of the
EOQ problem in which backorders are allowed.

show annotation

Let p be the backorder penalty per item per year, and let = be the fraction of
demand that is backordered. Both ) and z are decision variables. The holding
cost is charged based on on-hand inventory; the average on-hand inventory is
given by:

1 (1-2)T Q(1-=x)?
QU —2) —F—=—7
Similarly, the average backorder level is:
Qz’
2

There, the total average cost per year in the EOQB is given by:

hQ(1 — z)? 2 KM
Q) = 2L e

Therefore, to minimize it, we need to take
partialderivatives with respect to both variables and set them equal to O.

show annotation

— =—-hQ(1—z)+pQz =0
89 h(l—=z)* pz? KX
Qg 2 2 @




for the first equation, we have:

—hQ(1—2)+pQx =0
<= h(l—z) =pz
— z" h
= ——
h+p

Then, plug z*, we have

o — 2K\
VRl = 2)2 + pa?

Then

« x| 2KXhp

How do the optimal solution and cost in
Theorem 3.5 compare to the analogous quantitiesfrom the EOQ model?

show annotation

As p — 0o, Q* approaches the optimal EOQ order quantity, z* approaches 0, and
the optimal cost approaches the EOQ optimal cost.

As we continue to increase the number of
backorders, the marginal savingsin holding cost decreases and the marginal
increase in backorder cost increases

show annotation

3.6 The Economic Production Quantity Model

In a manufacturing environment,
the amount of time required to produce a batch of itemsusually depends on
how large the batch is—producing more items requires more time.




show annotation

n other words,the EOQ assumes that the
production rate is infinite—an arbitrary number of items can beproduced in a
fixed amount of time
show annotation

Let p = A/u be the utilization ratio, which
indicates the portion of time the system isactive. Q is now interpreted as a
production batch size rather than an order quantity.

show annotation

The fixed cost per year is still KA/Q, as in the
EOQ model, since T = Q/A.

show annotation
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Figure 3.11 EPQ inventory level curve.
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Maximum inventory level
pPT(p—A)=(1-pQ

Fixed cost per year: £
Average inventory level: %
Average annual holding cost: M

Total annual cost

We could find the Q that minimizes this
cost function by differentiating, as we did for theEOQ,

show annotation

3.7 Periodic Review: The Wagner-Whitin Model

3.7.1 Problem Statement

We now shift our attention to a periodic-
review model known as the Wagner—Whitinmodel

show annotation

he Wagner—Whitin modelassumes that the
demand is deterministic, there is a fixed cost to place an order, and stock-
outs are not allowed
show annotation

However, unlike the EOQ model, the Wagner—
Whitin model allows the demand to changeover time—to be different in each
period




show annotation

dynamic economic lot-sizing (DEL) model

his model is sometimes referred to as
thedynamic economic lot-sizing (DEL) model or the uncapacitated lot-sizing
(ULS) model.
show annotation

We first formulate this model as a mixed-
integer optimization problem (MIP). We willthen discuss a dynamic
programming (DP) algorithm for solving it.
show annotation

3.7.2 MIP Formulation

Constraints (3.34)are the inventory-balance
constraints: They say that the ending inventory in period t isequal to the
starting inventory, plus the new units ordered, minus the demand.

show annotation

This problem can be interpreted as a simple
supply chain network design problem
show annotation

It can be solved as an MIP, but it ismore
common to solve it using DP or as a shortest path problem, as we discuss in
the nextsection
show annotation

3.7.3 Dynamic Programming Algorithm

Theorem 3.7 Every optimal solution to the
Wagner—Whitin model has the ZIO property;that is, it is optimal to place
orders only in time periods in which the initial inventory iszero




show annotation

Despite the efficiency of this algorithm, a
number of heuristicshave been introduced and are still popular in practice.
These include Silver—Meal, partperiod balancing, least unit cost, and other
heuristics
show annotation

4.Stochastic Inventory Models: Periodic
Review

In this chapter and the next, we will
consider inventory models in which the demand isstochastic

show annotation

A key concept in these chapters will be that
of a policy. A policy is a simple rulethat provides a solution to the inventory
problem.
show annotation

One could imagine severalpossible policies for
this system. Here are a few:
show annotation

Every R periods, place an order for Q) units.

Whenever the inventory position falls to s, order @ units.

Whenever the inventory position falls to s, place an order of sufficient size
to bring the inventory position to S.

Place an order whose size is equal to the first two digits of last night’s

lottery number. Then, wait a number of periods equal to the last two digits
of the lottery number before placing another order.



Forexample, policy 1 sounds reasonable, but
only if we choose good values for R and Q.
show annotation

When using policies, then, inventory
optimization really has two parts: Choosing theform of the optimal policy and
choosing the optimal parameters for that policy.

show annotation

Similarly, for some problems,no one even
knows the form of the optimal policy, so we simply choose a policy that
seemsplausible
show annotation

Before continuing, we introduce two
important concepts in stochastic inventory theory:cycle stock and safety
stock.
show annotation

(or working inventory) is the inventory that is intended to meet
the expected demand.

is extra inventory that's kept on hand to buffer against
uncertainty.

We'll see later that the cycle stock
depends on the mean of the demand distribution, whilethe safety stock
depends on the standard deviation.
show annotation

4.2 Demand Processes

In real life, customers tend to
arrive at a retailer at random, discrete points in time.

show annotation




One way to model these demands is using a
Poisson process, which describesrandom arrivals to a system over time.

show annotation

Sometimes, the normal distribution is used
as an approximationfor the Poisson distribution, in which case u = o2 since
the Poisson variance equals itsmean. (This approximation is especially
accurate when the mean is large.
show annotation

One drawback to using the normal distribution
Is that any normal random variable willsometimes have negative realizations,
even though the demands that we aim to model arenonnegative

show annotation

This suggeststhat the normal distribution is
appropriate as a model for the demand only if u > o — say,if u > 4o.

show annotation

4.3 Periodic Review With Zero Fixed Costs: Base-
stock Policies
For the remainder of this chapter, we

focus on periodic-review models
show annotation

We will model the time value of money by
discounting future periods using a discountfactor v € (0, 1]

show annotation




For the single-period and finite-
horizonproblems, our objective will be to minimize the total expected
discounted cost over thehorizon

show annotation

4.3.1 Base-Stock Policies

A base-stock policy works as follows: In each
time period, we observe the current inventory position and then place an
order whose size is sufficient to bring the inventory position up to S

show annotation

4.3.2 Single Period: The Newsvendor Problem

Single-period models are most often applied
to perishable products, whichinclude (as you might expect) products such as
eggs and flowers that may spoil, but alsoproducts that lose their value after a
certain date,
show annotation

This model is one of the most fundamental
stochastic inventory models, and many ofthe models discussed
subsequently in this book use it as a starting point.

show annotation

If the newsvendor has unsold newspapers left
at the endof the day, he cannot sell them the next day, but he can sell them
back to the publisherfor $0.12 (called the salvage value).

show annotation

The inventory carried by the
newsvendor can be decomposed into two components:cycle stock and




safety stock
show annotation

As previously noted, the newsvendor
model applies to perishable goods. In particular,it applies to goods that
perish before the next ordering opportunity.

show annotation

The holding cost is the cost per unitof positive
ending inventory, while the stockout cost is the cost per unit of negative
endinginventory. The costs h and p are sometimes referred to as overage
and underage costs,
show annotation

We will refer to the model discussed here as
the implicit formulation of the newsvendorproblem since the costs and
revenues are not modeled explicitly but instead are accountedfor in the
holding and stockout costs h and p
show annotation

Our goal is to determine the base-stock
level S to minimize the expected cost in thesingle period.

show annotation

These functions are known as the loss
function and the complementary loss function,3respectively.

show annotation

Let I(S,d) = (S — d)*, and B(S,d) = (d — S)~ be the on-hand inventory and
backorders, respectively. At the end of period if the firm orders up to S and sees
a demand of d units. The cost for an observed demand od d is:

g(Sa d) — hI(Sa d) +pB(Sa d)
— h(S—d)* +p(d—5)"



Since the demand is , however, we must have an expectation over D.
Let I(S) = E[I(S,d)] = E[B(S, D)] be the on-hand inventory and
backorders if the firm orders up to S. Then

9(8) = hI(S) + pB(S)
=hE [(S—D)"| +pE[(D—-8)"]
:h/o (S —d) f(d)dd+p/0 (d—S)"f(d)dd

o0

S
:hl(s—@ﬂ@dd+gé(d—aﬂ@dd

let
n@) = E[(X—2)"] = [ (- 2)fw)dy
o) = [(X~2) ] = [ (e~ ) dy
Then:
9(S) = hii(S) + pn(S)
Since
S
nwy—Afsaﬂ@dd +
[ s-ds@dd- [ (- ds@aa
0 e s
= S—u+/ (d—S)f(d)dd
S
=S —p+n(S)
where p is the of f(z). So we can simplify the expression of g(.5):
9(S) = h[S — p+n(S)] + pn(S)
= h(S — p) + (h+ p)n(S)
These functions are known as the and the

, respectively. Here we can calculate the derivatives of the above two
equations according to the Leibniz's Rule:



https://blog.csdn.net/weixin_39699362/article/details/136282346#:~:text=Leibniz%E7%A7%AF%E5%88%86%E6%B3%95%E5%88%99%EF%BC%88Leibniz%20Integral%20Rule%EF%BC%89%E4%B9%9F%E8%A2%AB%E7%A7%B0%E4%B8%BA%E7%A7%AF%E5%88%86%E7%9A%84%E5%BE%AE%E5%88%86%E6%B3%95%E5%88%99%EF%BC%88Differentiation%20under,the%20Integral%20Sign%EF%BC%89%EF%BC%8C%E5%AE%83%E6%98%AF%E6%95%B0%E5%AD%A6%E4%B8%AD%E4%B8%80%E4%B8%AA%E7%94%A8%E6%9D%A5%E4%BA%A4%E6%8D%A2%E5%BE%AE%E5%88%86%E8%BF%90%E7%AE%97%E5%92%8C%E7%A7%AF%E5%88%86%E8%BF%90%E7%AE%97%E9%A1%BA%E5%BA%8F%E7%9A%84%E6%96%B9%E6%B3%95%E3%80%82%20%E8%BF%99%E4%B8%AA%E6%B3%95%E5%88%99%E5%85%81%E8%AE%B8%E6%88%91%E4%BB%AC%E5%9C%A8%E4%B8%80%E5%AE%9A%E6%9D%A1%E4%BB%B6%E4%B8%8B%E5%AF%B9%E5%90%AB%E6%9C%89%E5%8F%82%E6%95%B0%E7%9A%84%E7%A7%AF%E5%88%86%E8%A1%A8%E8%BE%BE%E5%BC%8F%E8%BF%9B%E8%A1%8C%E5%BE%AE%E5%88%86%E3%80%82

n'(z) = (y — 2)f(y)

o 0y —2)f(y)
y=z +/:c Oz dy

o+ [ -nrway

= F(z) — F(+o0)
— F(z) — 1
Similarly,
' (z) = F(z)

So we have n” =" = f(z) > 0, so both n(-) and 7(-) are convex. To minimize
9(S), thus, we set its first derivative to 0,

dﬁf) =h+ (h+p)F(z)—1 = (h+p)F(S)—p=0
F(S) = hL;p



f(d)

P (55)

Figure 4.1 Optimal solution to newsvendor problem plotted on demand distribution.
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Theorem 4.1 The optimal base-stock
level for a single-period model with no fixed costs(the newsvendor model) is
given by
show annotation

p/(h + p) is known as the critical ratio (or
critical fractile).
show annotation

The formulation given in Sections 4.3.2.2—
4.3.2.3 in-terprets hand pas the overage and underage costs, respectively—
the cost per unit of havingtoo much or too little inventory.

show annotation




Sometimes, this is instead formulated as a
profit maximization problem in which we maximize =(S) = —g(95).

show annotation

We can translate this to the implicit version of
the problem by determining the overageand underage costs

show annotation

Actually, we can translate this explicit formulation to the implicit version by
determining the overage and underage costs (which we'll denote by A’ and p/,
respectively).

h' = h + ¢ — v : For each unit of excess inventory, we incur a holding cost of
h, and we paid c for the extra unit but earn v as a salvage value.

p' = p+r — c: For each stockout, we incur a penalty of p in addition to the
lost profit r — c.

S*:F_l pl :F_l p+T—C :F_l p+T—C
h'+p' h+c—v+p+r—c h+p+r—wv

where r is the revenue earned per unit sold, ¢ is the cost per unit purchased, and
v is the salvage value earned for each unit of excess inventory.

t is perfectly acceptable to set any of the
cost or revenue parameters to O if they arenegligible or should not be
included in the model
show annotation

If we leta = p/(h + p), we have

show annotation

__ _b
If we let a = T We have

S*=pu+ z40



But should the firm order any units? By the
convexity of g(S),the answer is no: It would be better to leave the inventory
level where it is
show annotation

one of the simplest is to use a moving
average(Section 2.2.1) to estimate uand what we might call a moving
standard deviation to estimateo in period t

show annotation

4.3.2.8 Discrete Demand Distributions
Suppose now that D is discrete. In thiscase, (4.3) becomes

show annotation

4.3.3 Finite Horizon

Now consider a multiple-period problem
consisting of a finite number of periods, T.Suppose we are at the beginning
of period t
show annotation

Let 6;(x) be the optimal expected cost in periods ¢,¢ + 1,---, T if we begin
period t with an inventory level z. Then, we have

0:(z) = min {c(y — ) + g(y) + YEp[0:11(y — D)}

y>x

where
o(y) = h / y-d)f(d)dd+p / (d— v)f(d)dd = hay) + pn(y)

The interpretation of each term can be explained as follows:
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First consider what happens at the end of
the time horizon. Presumably, on-handunits and backorders must be treated
differently now that the horizon has ended than theywould be during the
horizon

show annotation

4.3.4 Infinite Horizon

This problem is sometimes referred to as the
infinite-horizon newsvendormodel.
show annotation

An alternate objective is to minimizethe expected
cost per period. The former case is known as the discounted-cost
criterion,while the latter is known as the average-cost criterion

show annotation

Under the average cost criterion, we assume v = 1. The expected cost in a given
period if we use back-stock level S is given by:


https://mp.weixin.qq.com/s/205pG6pGNTwsBZaKOLJn2A

o0

S
4(S) = h /0 (5~ d)f(d)dd +p /S (d— 8)f(d)dd = ha(y) + pn(y)

Now suppose v < 1, consider the discounted-cost criterion. The optimal base-
stock level is the same in every period, and it is given by

g+ _ p-1 <p—}fl+—p’v)0)

Then, if demand is normally distributed, then after modifying to account for -,
the results would be

= U+ 2,0

S =p+od" (p_(1—7)0>

h+p

_ (p=(1=y)e
where a = (%).
In formulating (4.38), we glossed over two
potentially problematic issues.
show annotation

Two problematic issues:

Why didn’t we account for the purchase cost ¢,

Why didn’t we account for the cost in future periods?

4.4 Periodic Review With Nonzero Fixed Costs:
(s, S) Polices

4.41 (s, S) Policies

We now consider the more general case in
which the fixed cost K may be nonzero. If K # 0, it may no longer make
sense to order in every period, since each order incurs a cost.

show annotation




Instead, the firm should order only when
the inventory position becomes sufficiently low.

show annotation

Both s and S are constants, and s < S.The
quantity s is known as the reorder point and S as the order-up-to level

show annotation

the optimality of (s,S) policies for multiperiod
problems was not provenuntil Scarf’s (1960) paper

show annotation

We will discuss how to determine the optimal
s and S for the single-period, finite-horizon, and infinite-horizon cases
separately
show annotation

Actually, the single-period case is not nearly
as useful for the K > 0 caseas itis for the K = 0 case

show annotation

4.4.2 Single Period

For given s and S, theordering rule is: If x < s,
order S — x; otherwise, order O.
show annotation
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K+ g(S), ifz<s
9(x), ife>s

g(s,5) = {



Optimizing g(s, S) over s and S is actually
quite easy (Karlin 1958b): We already knowfrom Theorem 4.1 that
F —1(p/(h + p)) minimizes g(5S),
show annotation

4.4.3 Finite horizon

The finite-horizon model with nonzero fixed
costs can be solved using a straightforwardmodification of the DP model for
the zero-fixed-cost case from Section 4.3.3.
show annotation

Now 0,(x) must account for the fixed cost in
period t (if any), as well as the purchase cost and expected holding and
stockout costs in period t, and the expected future costs, as inthe K = 0
model. In particular
show annotation

Now 6;(z) must account for the fixed cost in period ¢ (if any), as well as the
purchase cost and expected holding and stockout costs in period ¢, and the
expected future costs, as in the K = 0 model. In particular,

0i(z) = min {Ké(y — z) + c(y — =) + g(y) + YEp[0s11(y — D)]}

y>x

where

5(2) = {1, if2z>0

0, otherwise

: Since here fixed cost is not zero, so add the fixed costs term Ké(y — z). It
also consists of the general equation of periodic review, as follows (figure from
Link):
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0, otherwise

However, just as before, we would rather have
a simple policy to follow, rather than having to specify y;(z) for every t and x

show annotation

In particular, for period t, there are values S,
and s; such that for x < s;, we have y,(z) = S, and for x > s;, we have
y:(z) = x. In other words, these curves each depict an (s, S) policy.

show annotation

4.4.4 infinite Horizon

Recall that the infinite-horizon model with no

fixed costs (Section 4.3.4) is as simple asthe single-period model (Section
4.3.2).
show annotation

nfortunately, this is not true in the fixed-
costcase. The infinite-horizon model is more difficult than its single-period or
finite-horizoncounterparts
show annotation

A renewal process is a random variable N(t)
that counts the number of “renewals”that have occurred by time t, where the
amount of time between the (n — 1)st renewal and the nth renewals is a




random variable X,,
show annotation

4.5 Policy Optimility

Now that we know how to find the optimal
S for a base-stock policy (Section 4.3) and the optimal s and S for an (s, S)
policy (Section 4.4), we prove that those policy types are in fact optimal for
their respective problems
show annotation

e are trying toshow that no other policy, of any
type, using any parameters, can outperform our chosenpolicy type (provided
we choose the optimal parameters) in the long run

show annotation

We will first consider the zero-fixed-cost
case, then the fixed-cost case, in both casesconsidering single-period,
finite-horizon, and infinite-horizon cases separately

show annotation

We continue to assumethat the cost and
demand parameters are stationary, but the results below still hold if
thesevary from period to period (deterministically).

show annotation

Recall the optimal cost in periods ¢, - - -, T if we begin period ¢ with an inventory
level of z, can be calculated recursively as:

0:(z) = min {Ké(y — z) + c(y — z) + g(y) + YEp[0i11(y — D)]}

y>x

Our goal throughout this section will be to use
the structure of (4.81) toshow that the optimal actions follow the policies we



have conjectured are optimal
show annotation

4.5.1 Zero Fixed Costs: Base-Stock Policies

We first consider the case in which K = 0
and prove that—regardless of the horizonlength—a base-stock policy is
always optimal
show annotation

we'll consider the special case in which T'= 1 and K = 0. We'll also assume that
the terminal cost function (i.e., 6;1(x) = 0, see Section 4.3.3) is equal to 0.

Then, the optimal cost reduces to:

0(z) = min {c(y — =) + g(y)}

y>z
We cam rewrite 6(z) as

b(a) = min {H(y) - ca}

where

H(y) = cy +g(y)

Since we are calculating (z) for fixed x, we see that the optimal decision can be
found by minimizing H(y) over y > z, that is, starting at y = =, we want to
minimize H(y) looking only “to the right” of z.

, we can have:

If z < S, then the optimal strategy istosety =S

if z > S, the optimal strategy is to do nothing, to set y = x. In other words,
the optimal policy is a

And H(y) is convex because g(y) is convex,so
we have now sketched the proof of the following theorem.



show annotation

Theorem 4.10 A base-stock policy is optimal
for the single-period problem with no fixedcosts.

show annotation

It was simple to prove that H(y) is convex,
and therefore thata base-stock policy is optimal, for the single-period
problem
show annotation

4.5.2 Nonzero Fixed Costs: (s, S) Policies

We now allow K 6= 0 and prove that an (s,S)
policy is optimal.
show annotation

4.6 Lost Salse

Throughout this chapter, we have
assumed that unmet demands are backordered.

show annotation

we assume instead that they are lost. The
distinction is only important when T > 1.(When T = 1, unmet demands can
only be lost.)
show annotation

4.6.1 Zero Lead Time

First consider the case in whichK = 0. In the
finite-horizon model, the DP recursion (4.36) changes only slightly



show annotation

6.(z) = min {cy —2) +9(y) +1Ep[er(y — D)7}
: the positive part of y — D to reflect the fact that the inventory level cannot
become

A base-stock policy is still optimal for the
infinite-horizon model. Under the average-cost criterion (y = 1) with lost
sales,

show annotation

5. Stochastic Inventory Models: Continuous
Review

5.1 (r, Q) Policies

In this chapter, we consider a setting
similar to the economic order quantity (EOQ) model(Section 3.2) but with
stochastic demand.
show annotation

The inventory position is monitored
continuously, and orders may be placed at any time. There is a deterministic
lead time L(> 0). Unmet demands are backordered

show annotation

If the demand has a continuous
distribution, then the inventory level decreases smoothlybut randomly over
time, with rate ),
show annotation




r+ Q

N

Figure 5.1 Inventory level (solid line) and inventory position (dashed line) under (r, Q) policy.

We’ll assume the firm follows an (r,Q) policy:
When the inventory position reaches acertain point (call it r), we place an
order of size Q. L years later, the order arrives

show annotation

Note that the inventory level (solid line in
Figure 5.1) and inventoryposition (dashed line) differ from each other during
lead times but coincide otherwise.
show annotation

Differing from the EOQ model, which has a single decision variable Q, the (r, Q)
Policy has two decision variables: ) (the order quantity, sometimes called the
) and r (the )

Our goal is to determine the optimal r and Q to

minimize the expected costper year.
show annotation

since in either case theinventory position may
fall strictly below the reorder point before a replenishment order isplaced.




show annotation

5.2 Exact (r, ) Problem With Continuous Demand
Distribution

we introduce an exact model for systems
with continuous demand distribu-tions. We first formulate the expected cost
function and then derive optimality conditionsfor it

show annotation

Fixed cost: K > 0
Purchase cost: ¢ > 0
Holding cost: h > 0
Stockout cost: p > 0

D: the lead-time demand ( #YZE3K), a random variable with mean p
and variance o2, pdf f(d) and cdf F(d)

5.2.1 Expected Cost Function

Our first step is to derive an exact
expression for the expected cost as a function of r and Q.

show annotation

First, we place orders, on average every Q/\ years. There the expected fixed
cost is given by K\/Q.

If the inventory position at time ¢ is given by I P(t), then the inventory level at
time t + L is given by:

IL(t + L) = IP(t) — (t,¢ + L]



As in the periodic-review case, we can drop the time indices in steady state and
write:

IL=IP—-D
where D is the lead-time demand.
Once we determine the distribution of IP, the
(unconditional) expected inventory costthen follows from the law of total

expectation.
show annotation

Let g(z) be the rate at which the inventory cost accrues when IL = z:
g(z) = ha™ +pz~

: g(+) is a rate because the inventory level is changing continuously over
time, given in units of money per year. Then the expected inventory cost per

year is:
[E[ inventory cost | = E;z[g(IL)]
=E;p [EIL|IP[Q(IL)H
= Erp [Ep[g(IP — D)]]
= Erp[g(IP)]
where

9(y) = hE[(y — D)"] + pE[(D — y) ]

9(y) is the rate at which the expected inventory cost accrues at time ¢ + L when
the inventory position at time ¢ equals y.

It remains to determine the distribution of IP.
By the definition of an (r, Q) policy, we know that I P takes values only in
[, + Q.

show annotation
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1 T’+Q
E[inventory cost] = o) / 9(y)dy

Combining the expected inventory cost and the expected fixed cost KA/Q, we
have the expected total cost per year:

KX+ [T g(y)dy
Q

Lemma 5.1 g(r,Q) is jointly convex in r and Q.

9(r,Q) =

show annotation

In what follows, we use the expected cost
expression (5.7) to derive optimality conditionsfor r and Q by first fixing @
and finding the optimal corresponding r, and then optimizingover Q

show annotation

5.2.2 Optimality Conditions

Lemma 5.2 For any @Q > 0,r = r(Q) if and only
if
show annotation

Forany @ > 0,7 = r(Q) if and only if
g(r) = g(r + Q)

The motivation behind this result is that,
during one replenishment cycle, we need topass through all of the inventory
positions in [r.r + Q]
show annotation

(r, @) minimize g(r, Q) if and only if:
9(r,Q) =g(r+ Q) = g(r)



5.3 Approximations for (r, Q) Problem With
Continuous Distribution

5.3.1 Expected-Inventory-Level Approximation

The first approximation we discuss is
probably the best known and most widely coveredapproximation to find r and
Q.

show annotation

We call this the expected-inventory-level
(EIL) approximation,for reasons that will become clear shortly

show annotation

The approach relies on the following two
simplifying assumptions to make the modeltractable:

show annotation

Two assumptions:

Simplifying Assumption 1 (SA1): Incur holding costs at a rate of h - I L per
year, where IL is the inventory level, whether IL is positive or negative.
Simplifying Assumption 2 (SA2): The stockout cost is charged once per
unit of unmet demand, not per year.
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Figure 5.3 Expected inventory curve for (r, Q) policy.

The costs:

The expected on-hand inventory when the order arrives:
s=r— AL

The average inventory level:

Q Q

=X N+ =

s+ 5 =7 AL + 5
By , the per year is:
h (r — AL + %)

: this expression is only approximate, since that we are calculating the
expected holding cost as h - E[IL]* (provided that E[IL] > 0).

That is why we refer to this as the “expected-
inventory-level” approximation. The problem is more difficult without SA1
because of the nonlinearity introduced by the [-]™ operator.

show annotation




E[(D—r)"] = / “(d— ) fd)dd =n(r)

where n(r) is the loss function for the lead-
time demand distribution
show annotation

The expected number of stockout per year is

n(r) B An(r)
E[T] Q
then by , the per year is simply:
pAn(r)
Q

Note that we are assuming that r > 0, which is
a reasonable assumption in practice
show annotation

per year:

Cj) N K\ N pAn(r)

g(r,Q):h(r—)\L-i—— 0 0

For @ :



Jg h KX pin(r)

0Q 2 Q@ Q?

PN é (KA + pAn(r)] = %
— Q= 2[K\ —|—hp)\n(r)]
B 2A[K + pn(r)]
Q-2
For r:
dg pAn'(r)
" PA(F(r) —1) _
< Q 0
R Qh
r=F (1 - p—x>

Now we have two equations with two
unknowns, but these equations cannot be solvedin closed form.

show annotation

The approach given in Algorithm 5.7 first
sets @ equal to the EOQ quantity,i.e., ignoring the demand randomness.

show annotation

One major limitation of (r,Q) policies as
formulated aboveis that p is very hard to estimate

show annotation

5.3.2 EOQB Approximation

There are important connections between
the EOQ problem with planned backorders
show annotation




5.3.3 EOQ + SS Approximation

Another common approximation for r and
Q is to convert the inventory-cost parametersinto a service level and then to
use the approach described in Section 5.3.1.3 for type-1service level
constraints
show annotation

5.4 Exact (r, Q) Problem With Continuous
Distribution: Properties of Optimal » and ()

We now return to the exact model
from Section 5.2. We have two main goals in thissection

show annotation

We will analyze the properties of optimal solutions (and their costs) for
(r, @) policies, by deriving for r and @ and then
providing of the resulting optimal solutions.

We will compare (r, Q) policies to the EOQB model and prove.

if the EOQB model is used as a heuristic
for optimizing r and Q, asdiscussed in Section 5.3.2, the resulting error has a
fixed bound.
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Let G(Q) equal the expected cost per year as a function of @, assuming r is set
optimally for that Q,

G(Q) =49(r(Q), Q)
Let H(Q) be the value of g(y) aty = r(Q), or 7(Q) + Q
H(Q) = 9(r(Q)) = 9(r(Q) + Q)

Then we have



KM+ [ H(y)dy
B Q

G(Q)

6. Multi-echelon Inventory Models

we study inventory optimization models for
multiechelon (or multistage)systems with shipments made among the stages
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6.1 Introduction

There are two common ways to interpret the stages or nodes in the multiechelon
system:

Stages represent locations in a supply chain network, and links among the
stages represent physical shipments of goods.

Stages represent processes that the product must undergo during
manufacturing, assembly, and/or distribution.

the stages in Figure 6.1(a)may represent
the following physical locations: a supplier in China, a factory inCalifornia, a
warehouse in Chicago, and a retailer in Detroit (respectively).
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For example, the stages in Figure 6.1(a) may
represent thefollowing processes: manufacturing, assembly, testing, and
packaging. These fourfunctions may take place in four different locations or
all within the same building
show annotation

8. Facility Location Models

8.1 Introduction



One of the major strategic decisions
faced by firms is the number and locations of factories,warehouses, retailers,
or other physical facilities
show annotation

The key trade-off in most facility
locationproblems is between the facility cost and customer service.

show annotation

More facilities

If we open a lot of facilities(Figure 8.1(a)), we
incur high facility costs (to build and maintain them), but we can providegood
service since most customers are close to a facility.
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N
5

(a) Many facilities open.

Few facilities



if we openfew facilities (Figure 8.1(b)), we
reduce our facility costs but must travel farther to reachour customers (or
they to reach us).
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(b) Few facilities open.

Most (but not all) location problems make
two related sets of decisions: (1) where tolocate, and (2) which customers
are assigned or allocated to which facilities.
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Therefore,facility location problems are also
sometimes known as location—allocation problems

show annotation

These differ in terms of how they model facility
costs (for example, some include the costsexplicitly, while others impose a
constraint on the number of facilities to be opened) andhow they model
customer service (for example, some include a transportation cost,
whileothers require all or most facilities to be covered—that is, served by a
facility that is withinsome specified distance).
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In addition to supply chain facilities such as
plants and warehouses, location modelshave been applied to public sector
facilities
show annotation

In addition, many operations research problems
can be formulatedas facility location problems or have subproblems that
resemble them
show annotation

In this chapter, we will begin by discussing a
classical facility location model, theuncapacitated fixed-charge location
problem (UFLP)
show annotation

we discuss cover-ing models (including the p-
center, set covering, and maximal covering problems)

show annotation

8.2 The Uncapacitated fixed-charge Location
Problem

8.2.1 Problem Statement

The uncapacitated fixed-charge
location problem (UFLP) chooses facility locations inorder to minimize the
total cost of building the facilities and transporting goods fromfacilities to
customers.
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Sometimes it’s also useful to think of an
upstream echelon,again with fixed location(s), that serves the DCs.




show annotation

Fixed cost

Each potential DC location has a fixed cost
that represents building (or leasing) thefacility;
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Transportation cost

transportation cost per unit of product
shipped from a DC to each customer.
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The problem is to choosefacility locations to
minimize the fixed cost of building facilities plus the transportationcost to
transport product from DCs to customers, subject to constraints requiring
everycustomer to be served by some open DC
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As noted above, the key trade-off in the
UFLP is between fixed and transportation costs

show annotation

8.2.2 Formulation

Define the following notations:

I : set of customers



J: set of potential facility locations

h; : annual demand of customer i € I

cij : cost to transport one unit of demand from facility j € J to customer
1el

f; : fixed annual cost to open a facility at site j € J

z; : 1if facility j is opened, O otherwise

yi; - the fraction of customer i's demand that is served by facility j

: The transportation costs c;; might be of the form kx distance for some
constant & (if the shipping company charges k per mile per unit) or more
arbitrary (for example, based on airline ticket prices, which are not linearly
related to distance)

In the former case,distances may be computed
in @ number of ways:
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Distances:

or

In general, we won’t be concerned with how
transportation costs are computed—we’ll assume they are given to us
already as the parameters c;;
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The UFLP is formulated as follows:

min Z fjacj + Z Z h,-c,-jyz-j

jeJ iel jeJ



subject to

Zyij:l Viel

jedJ
yijgmj Vie I,LVjeJ
z; € {0,1} Vijed
yUZO Viel,VjedJ

: in the discussion that follows, we'll use z* to denote the optimal objective
value of (UFLP).

The objective function (8.3) computes the
total (fixed plus transportation) cost.
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In fact, it is always optimalto assign each
customer solely to its nearest open facility.
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It is important to understand that thelPs have
the same optimal objective value, but the LPs have different values—one
providesa weaker LP bound than the other.
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Some of the earliest exact algorithms involve
simply solving the IP usingbranch-and-bound
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Therefore, a number of other optimal
approaches were developed. Two ofthese—Lagrangian relaxation and a
dual-ascent method called DUALOC—are discussedin Sections 8.2.3 and
8.2.4, respectivel
show annotation

8.2.3 Lagrangian Relation



One of the methods that has proven to be
most effective forthe UFLP and other location problems is Lagrangian
relaxation, a standard technique forinteger programming
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Lagrangian relaxation is to remove a
set of constraints to create a problem that’seasier to solve than the original.
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by adding a term that penalizes solutions for
violating theconstraints
show annotation

When the upper and lower bounds are close
(say, within1%), we know that the feasible solution we have found is close to
optima
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We relax constraints (8.4), removing them from
the problem andadding a penalty term to the objective function:
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Z Ai(1 — yi5)

jeJ
The )\; are called

For now, assume A is fixed. Relaxing
constraints (8.4) gives us the following problem,known as the Lagrangian
subproblem:
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The

minz fizj+ Z Z hicijyij + Z Ai(1 — yij)

JjeJ iel jeJ jeJ
- Z fiz;+ Z Z(hicz’j — Xi)Yi; + Z A
jeJ icl jeJ jeJ
subject to
Yij < VieI,VjeJ
xj € {07 ]-} VJ eJ
yij > 0 VieI,LVjeJ

It turns out that the problem is quite easy to
solveby inspection—we don’t need to use an IP solver or any sort of
complicated algorithm.
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The point of Lagrangian relaxation is not to
generate feasible solutions, since the solutionsto (UFLP-LRA) will generally
be infeasible for (UFLP). Instead, the point is to generategood (i.e., high)
lower bounds in order to prove that a feasible solution we’ve foundsome
other way is good.
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8.2.4 The DUALOC Algorithm
8.3 Other Minisum Models

The UFLP is an example of a minisum
location problem. Minisum models are so calledbecause their objective is to
minimize a sum of the costs or distances between customers andtheir
assigned facilities
show annotation

covering location problems are more
concerned with the maximum distance, with the goalof ensuring that most or
all customers are located close to their assigned facilities




show annotation

minisum models are more commonlyapplied in
the private sector, in which profits and costs are the dominant concerns,
andcovering models are most commonly applied in the public sector, in
which service, fairness,and equity are more important

show annotation

8.3.1 The Capacitated Fixed-Charge Location Problem

The UFLP can be easilymodified to account for
capacity restrictions; the resulting problem (not surprisingly) iscalled the
capacitated fixed-charge location problem, or CFLP.
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8.4 Covering Models

fire departments should have the objective
of arriving to afire within 4 minutes of receiving a call
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ince the optimal solutions to those
problems may assign some customers tovery distant facilities if it is cost
effective to do so
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Instead, we need to use the notion ofcoverage,
which indicates whether a given customer is within a prespecified distance,
orcoverage radius, of an open facility.

show annotation




we discuss three seminal facility location
models that use coverage todetermine the quality of the solution
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Set covering location problem (SCLP): locates the minimum number of
facilities to cover every demand node
(MCLP): covers as many demands as
possible while locating a fixed number of facilities.
: locates a fixed number of facilities to minimize the
maximum distance from a demand node to its nearest open facility.

8.4.1 The Set Covering Location Problem

In the set covering location problem
(SCLP), we are required to cover every demand node;the objective is to do
so with the fewest possible number of facilities.
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a;; = 1:if facility j € J can cover customer i € I (if it is open), O otherwise.

The coverage parameter a;; can be derived from
a distance or cost parameter such as c;; in the UFLP,
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Then, the SCLP can be formulated as follows:

min E x|

jed

subject to



Zaija:j >1 Viel
jedJ
z; € {0,1} Vied

Sometimes we wish to minimize the total fixed
cost of the opened facilities, rather than the total number, in which case the
following objective function is appropriate
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min Z fjwj

jed
8.4.2 The Maximal Covering Location Problem

The maximal covering location problem
(MCLP) seeks to maximize the total number ofdemands covered subject to a
limit on the number of open facilities.
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