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Decision is a risk rooted in the courage of being free.
— Paul Tillich

Lectures:

1. Introduction
y people will formin the line?” Queueing theory attempts to answer these
questions through detailedmathematical analysis .Fundamentals of Queueing
Theory

show annotation

lof work in the area since then. There are many valuable applications of
queueing theory including traffic flow(vehicles, aircraft, people,

communications), scheduling (patients in hospitals, jobson machines,
programs on a computer), and facility design (banks, post

offices,amusement parks, fast-food restaurants). Most real problems do not

corre
show annotation

1.1 Measures of System Performance

1 Measures of System Performance Figure 1.1 shows a typical queueing
system: Customers arrive, wait for service,receive service, and then leave the

system. Some customers may leave withou

show annotation

What might one like to know about the effectiveness of a queueing system?

Generally there are three types of system responses of interest:

#博士生资格考试资料

1. 顾客的等待时间：waiting time that a typical customer might endure,



f the idle time of the servers. Since most queueing systems have stochastic

elements,these measures are often random variables, so their probability
distributions – or atleast their expected values – are sought .Regarding

waiting times, there
show annotation

d values – are sought.Regarding waiting times, there are two types – the
time a customer spends inthe queue and the total time a customer spends in

the system (queue plus service) .Depending on the system being s
show annotation

等待时间分为顾客在队列中等待的时间（排队时间），以及顾客在系统中等待的

总时间（排队时间和接受服务时间之和）

Notation:

s denoted as W.Correspondingly, there are two customer accumulation

measures – the number ofcustomers in the queue and the total number of
customers in the system . The formeris of interest if we

show annotation

顾客累积数量： 队列中的顾客数和系统中的顾客总输出

re systemis devoid of customers. The task of the queueing analyst is

generally one of two things – to determinesome measures of effectiveness
for a given process or to design an “optimal” systemaccording to some

2. 队列或系统中累积的顾客数：the number of customers that may accumulate

in the queue or system,

3. 服务员的空闲时间：idle time of the servers.

Wq : The average waiting time of a typical customer in queue;

W  : The average waiting time in the system;

Lq : The average number of customers in the queue;

L : The average number of customers in the systems;



criterion. To do the former, one must dete

show annotation

e theoptimum number of servers. To design the waiting facility, it is

necessary to haveinformation regarding the possible size of the queue .
There may also be a spacecost th

show annotation

, he or she may use simulation. Ultimately,the issue generally comes down to

a trade-off between better customer service andthe expense of providing
more service capability, that is, determining the increase ininvestment of

service for a corresponding decrease in customer delay .4
INTRODUCTION1.2 Characteristi

show annotation

1.2 Characteristics of Queueing System

racteristics of Queueing Systems A quantitative evaluation of a queueing
system requires a mathematical characteri-zation of the underlying

processes. In many cases, six basic characteristics providean adequate
description of the system: 1. Arrival pattern of customers2

show annotation

In many cases, six basic characteristics provide an adequate description of the

system:

1.2.1 Arrival Pattern of Customers

1. 顾客的到达过程 Arrival pattern of customers

2. 服务员的服务过程 Service pattern of servers

3. 服务员的数量和服务通道的数量 Number of servers and service channels

4. 排队规则 System capacity

5. 系统容量 Queue discipline

6. 服务阶段的数量 Number of service stages



arrivals (interarrival times). A common arrival process is the Poisson pro-

cess, which will be described in Section 2.2 . It is also necessary to know w
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the pattern changes with time. An arrivalpattern that does not change with
time (i.e., the probability distribution describingthe input process is time-

independent) is called a stationary arrival pattern. Onethat is not time-
independent is called nonstationary. An example of a system witha no

show annotation

decide not to enter the system. If a customerdecides not to enter the queue

upon arrival, the customer is said to have balked. Acustomer may enter the
queue,

show annotation

ustomer is said to have balked. Acustomer may enter the queue, but after a
time lose patience and decide to leave. Inthis case, the customer is said to

have reneged . In the event that there are tw
show annotation

stomer is said to have reneged. In the event that there are two or

moreparallel waiting lines, customers may switch from one to another, that is,
jockey forposition . These three situations are all

show annotation

1.2.2 Service Patterns

ce may also be single or batch. One generally thinks of one customer
beingserved at a time by a given server, but there are many situations where

customersmay be served simultaneously by the same server , such as a

止步 (balked)

中途退出 （Reneged)

换队 (jockey)



computer with parall

show annotation

teredand become less efficient. The situation in which service depends on

the number ofcustomers waiting is referred to as state-dependent service .
Service, like arrivals, canbe

show annotation

状态相依服务

1.2.3 Number of Servers

tem to be fed by a single line. Thus, when specifying the number ofparallel
servers, we typically assume that the servers are fed by a single line. Also,it is

generally assumed that the servers operate independently of each other.
1.2.4 Queue DisciplineQueue disc

show annotation

1.2.4 Queue Discipline

ach other.1.2.4 Queue Discipline Queue discipline refers to the manner in

which customers are selected for servicewhen a queue has formed. A
common discipline in everyday
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常见的排队规则：

状态相依服务 (state-dependent service)

FCFS : first come first served 先到先服务

LCFS : last come first served 后到先服务

RSS : random selection for service 随机服务

PS : processor sharing 处理器共享

pooling : 轮询（一个服务员 为多个序列的顾客提供服务，先服务第一队列的

顾客吗，然后服务第二个队列的顾客，以此类推）



of those with lowerpriorities. There are two general situations in priority

disciplines, preemptive andnonpreemptive. In the nonpreemptive case, the
show annotation

两种有限规则：抢占和非抢占

1.2.5 System Capacity

until space becomes available. These are referred to as finite
queueingsituations; that is, there is a finite limit to the maximum system size.

A queue withlimited waiting room
show annotation

1.2.6 Stages of Service

eedback may occur (Figure 1.3). Recycling is commonin manufacturing
processes, where quality control inspections are performed aftercertain

stages, and parts that do not meet quality standards are sent back for repro-
cessing. Similarly, a telecommunications
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1.2.7 Notation

tem with feedback.1.2.7 Notation As shorthand for describing queueing
processes, a notation has evolved, due for themost part to Kendall (1953),

非抢占情形

具有最高优先级的顾客排在队列的最前面，但要一直等到当前正在服务的顾客

的服务结束后，顾客才能接受服务，即使正在接受服务的顾客优先级更低；

抢占情形

即使优先级较低的顾客已经在接受服务，也允许优先级较高的顾客在到达时立

即接受服务，中断服务员对该优先级顾客的服务，只有高优先级顾客接受完成

服务后，该低优先级顾客才能继续接受服务。这时又有两种情形：

该顾客可以从被抢占的时刻继续接受服务；

重新开始接受服务



which is now rather standard throughout the queueingliterature . A queueing

process is describe
show annotation

A queueing process described by a series of symbols and slashes (斜线)
A/B/X/Y /Z :

M/D/2/∞/FCFS （或 M/D/2）表示这样一个排队系统:

通常，如果系统容量没有限制，即 Y = ∞），则省略系统容量的符号；如果排队规

则是先到先服务（Z=FCFS），则省略排队规则的符号。因此 M/D/2/∞/FCFS 和
M/D/2 表达的含义相同。

A : denotes the inter-arrival time distribution (到达时间间隔分布)

B : service time distribution (服务时间分布)

例子

到达时间服从指数分布

服务时间是定长的

有两个并行的服务员

系统容量无限（即允许进入系统的顾客数没有限制）

排队规则是先到先服务



sed for the Erlangdistribution. Rather, M is used, standing for the Markovian

or memoryless propertyof the exponential (described in Section 2.1) .
Second, the symbol G represent
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1.2.8 Model Selection

e there are c checkoutcounters. If customers choose a checkout counter on

a purely random basis (withoutregard to the queue length in front of each
counter) and never switch lines (nojockeying), then we have c independent

single-server models. If, instead, there is asingle w
show annotation

ndependent single-serverqueues. As jockeying is rather easy to accomplish
in supermarkets, the c-servermodel with one queue may be more

appropriate and realistic than c independentsingle-server models, which one
might have been tempted to choose initially prior togiving much thought to

the process. 1.3 The Experience of WaitingThi
show annotation

1.3 The Experience of Waiting

proved in a number ofother ways. This section summarizes several
principles, proposed by Maister (1984),related to the experience or

psychology of waiting. The reader can likely relate to
show annotation

1. Unoccupied time feels longer than occupied time.

2. Pre-process wait feels longer than in-process wait.

3. Anxiety makes waiting seem longer.

4. Uncertain waits are longer than known, finite waits.

5. Unexplained waits are longer than explained waits.

6. Unfair waits are longer than equitable waits.

7. Longer waits are tolerable for more valuable service.

8. Solo waits feel longer than group waits.



1.4 Little's Law

han group waits.1.4 Little’s Law A fundamental relationship that is used
extensively in queueing theory and throughoutthis text is Little’s law. Little’s

law provides a relatio
show annotation

Little’s law provides a relationship between three fundamental quantities: The
average rate λ that customers arrive to a system, the average time W  that a

customer spends in the system, and the average number L of customers in the
system.

L = λW

g-run average rate of arrivals. The second limit W is thelong-run average

time spent in the system per customer. The third limit L is thelong-run
average number of customers in the system .Theorem 1.1 [Little’s law] If t

show annotation

mber of customers in the system. Theorem 1.1 [Little’s law] If the limits λ and

W in (1.1) exist and are finite, thenthe limit L exists and L = λW.12
INTRODUCTIONLittle’s L

show annotation

2011) in aretrospective article. Before giving examples, we make some

general remarks about Little’s law. First,Theorem 1.1 is a statemen
show annotation

在给出例子之前，需要对 Little 法则进行一些一般性的解释说明：

1.4.1 Geometric Illustration of Little's Law

1. 定理用于计算长期平均值，即式中的 L, λ, W  被定义为无穷极限；

2. 定理要求 λ 和 W  有极限存在，这就排除了当时间无限增长时系统的指标无界

的情况；

3. 定理没有要求必须存在一个队列，但要求存在一个系统，顾客可以到达和离开
该系统。



ric Illustration of Little’s Law We now give a geometric “proof” of Little’s law.

This is not a rigorous proof, butrather a rough argument showing the main
ideas behind Little’s law. Full technicalproofs can be fou

show annotation

2. Review of Stochastic Processes
R 2REVIEW OF STOCHASTICPROCESSES This chapter provides an overview

of key concepts in stochastic processes usedthroughout this text . Topics
include the exponential

show annotation

2.1 The Exponential Distribution

2.1 The Exponential Distribution In queueing theory, the exponential
distribution is often used to model the time until aparticular event occurs –

for example, the time until t
show annotation

of theexponential distribution. We will see (Section 2.2) that the exponential
distribution isclosely connected with the Poisson process, another widely

used model in queueingtheory. The exponential distribution is
show annotation

定义：服从指数分布的随机变量是连续型随机变量，其 概率密度函数 pdf 为：

f(t) = λe−λt

服从指数分布的随机变量 T  的 累积分布函数 (cumulative distribution function,

CDF)、互补累积分布函数 (complementary cumulative distribution function,
CCDF)、期望和方差可以通过其概率密度函数求得，分别表示为：

F(t) ≡ Pr{T ≤ t} = 1 − e−λt

F̄(t) ≡ Pr{T > t} = e−λt

E[T ] = 1
λ , Var[T ] = 1

λ2



scussed in Chapters 3, 4, and 5. Definition 2.1 An exponential random

variable is a continuous random variablewith probability density function
(PDF): f(t) = λe−λt (t ≥0),where λ > 0

show annotation

Pr{T > t + s|T > s} = Pr{T > t} (s, t ≥ 0)

unt of time spentwaiting so far. Theorem 2.1 An exponential random variable

has the memoryless property .Proof: The proof is fairly stra
show annotation

.THE EXPONENTIAL DISTRIBUTION 37 Note that
Pr{T > t + s, T > s} = Pr{T > t + s} (if T is bigger than t + s, then it is also

bigger than s). �We now consider an example of a
show annotation

t can be found in manytextbooks. Theorem 2.4 Let T1, ⋯ , Tn be independent
exponential random variables with rates λ1, ⋯ , λn, respectively. Then Pr{Ti =

min{T1,...,Tn}}= λiλ1 +
show annotation

Pr{Ti = min{T1, ⋯ , Tn}} =
λi

λ1 + ⋯ + λn

stated more formally as follows. Theorem 2.5 Let T1,...,Tn be independent
exponential random variables withrates λ1,...,λn, and let T = min{T1,...,Tn}.

Then the event {Ti = T} isindependent of T .2.2 The Poisson ProcessThe Pois

show annotation

2.2 The Poisson Process

ent of T.2.2 The Poisson Process The Poisson process is a common process

for modeling arrivals to a queueing system.Intuitively, the process can be
thought of describing events that occur “randomly” intime. The concept of

randomness will b
show annotation



s and is nondecreasing in time. A counting process typicallyrepresents the
cumulative number of events that have occurred by time t. With

thesepreliminaries, we give a definition of the Poisson process .Definition 2.3
A Poisson proces

show annotation

finition of the Poisson process. Definition 2.3 A Poisson process with rate

λ > 0 is a counting process N(t) with the following properties: 1. N(0) = 0.2.
Pr{1 event betwee
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到达速率为 λ > 0 的泊松过程，满足以下性：

on of a Poisson random variable. Definition 2.4 A Poisson random variable is

a discrete random variable with prob-ability mass function pn = e−A Ann! (n
= 0,1,2,...),wh
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泊松随机变量是离散随机变量，其概率质量函数为：

pn = e−A An

n!
, n = 0, 1, 2, ⋯

其中，A 是大于 0 的常熟，泊松随机变量 X 的期望和方差分别为

Stochastic process (随机过程) {N(t), t ≥ 0} : a collation of random

variables indexed by time.

Counting process (记数过程) : a stochastic process in which N(t) takes on

nonnegative integer values and is nondecreasing in time.

1. N(0) = 0

2. Pr{1 event betweent and t + Δt} = λ Δ t + o(Δt).

3. Pr{2 or more events betweent and t + Δt} = o(Δt).

4. The numbers of events in nonoverlapping intervals are statistically

independent; that is, the process has independent increments (独立增量过
程).



E[X] = A, V ar[X] = A

tical induction (Problem 2.2). � Poisson processes have a number of

interesting additional properties, which arestated in the following theorems.
The first result is that a Poisson process hasstationary increments. This

means that the distribution of the number of events ina given time interval
(i.e., an increment) depends on the length of the interval butdoes not depend

on the absolute location of the interval in time . For example, thenumber of
even
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泊松过程具有平稳增量性，即在一个给定的时间区间内发生的事件数（即增量）

的分布仅取决于改区间的长度，与时间区间内的绝对位置无关。

have occurred on theinterval. T he notion that event times are “completely
random” comes from the factthat they are uniformly distributed in time.

However, we must be precise about whatwe mean by “event times.”
Specifically, we must distinguish between ordered and un-ordered event

times. To illustrate the difference, i
show annotation

4 REVIEW OF STOCHASTIC PROCESSES One important consequence of the
uniform property of the Poisson process is thatthe outcomes of random

observations of a stochastic process X(t) have the sameprobabilities as if the
scans were taken at Poisson-selected points . When X(t) is aqueue, this prop

show annotation

processes.THE POISSON PROCESS 45 Theorem 2.10 (Splitting) Let N(t) be a

Poisson process w
show annotation

分流

are independent, for all i 6= j. Theorem 2.11 (Superposition) Let N1(t),...,Nn(t)
be independ

show annotation



汇合

2.2.1 Generalizations of the Poisson Process

reater detail later in the text. The first generalization considered is a

nonhomogeneous Poisson process (NHPP).A NHPP can be thought of as a
Poisson process where the arrival rate λ is replaced bya time-dependent

function λ(t) . This type of situation is quit
show annotation

6 REVIEW OF STOCHASTIC PROCESSES Definition 2.5 A nonhomogeneous
(or nonstationary) Poisson process is a Poissonprocess (Definition 2.3) in

which assumption 2 is replaced by the following :Pr{1 arrival between t and t
+
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非齐次泊松过程 的定义为：

Pr{1 arrival between t and t + Δt} = λ(t)Δt + o(Δt)

从定义中可以发现，其到达速率 λ(t) 在一天中随时间 t 变化。
Note : 当非齐次泊松过程的到达速率 λ(t) 是常数时，可将非齐次泊松过程视为标准

泊松过程。

Theorem 2.12 For a non-homogeneous Poisson process N(t) with mean event

rate λ(t), the number of events in a time interval (s, t] is a Poisson random
variable with mean m(t) − m(s), where

m(t) ≡ ∫
t

0

λ(u) u

The difference m(t) − m(s) can be computed by integrating λ(u) @a

) −m(s), wherem(t) ≡∫ t0λ(u) du. The function m(t) is sometimes called the
mean value function It represents the cumulative expected number of events

by time t. The standard Poisson process is
show annotation



vals is 1 −∑99n=0 e−190 190nn! . The next generalization is a compound

Poisson process (CPP). A CPP is like aPoisson process b
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复合泊松分布类似于标准泊松分布，但在复合泊松分布过程中，事件按批次发生。

e have the following definition. Definition 2.6 Let M(t) be a Poisson process,

and let Yn be an i.i.d. sequence of strictly positive integer random variables
that are independent of M(t). Then N(t) ≡M(t)∑n=1Yn.is a compound P
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Formulation:

N(t) ≡
M(t)

∑
n=1

Yn

Example : 将一辆公交车视为一个批次，车上所有乘客在同一批次到达下一个站点。
批次数 （如到达站点的公交车数） 服从泊松分布，则 到达的顾客数 （如公交车上

的乘客数）服从 复合泊松分布。其中 M(t) 表示时刻 t 前到达的公交车数，Yn 表示
第 n 亮公交车上的乘客数，N(t) 表示时刻 t 前到达的总乘客数。

f people who have arrived by t. For a given value of t,N(t) is a compound

Poisson random variable, since the number of terms in the sumis random and
follows a Poisson distribution (and this number is independent of Yn)
.Compared to a standard Poisson
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与标准泊松过程相比，复合泊松过程具有独立且平稳的增量，但不具有 有序性，即

复合泊松过程是将 Sec 2.2 定义中的性质（2）和性质（3）替换为以下性质的泊松
过程：

Pri arrivals in (t, t + Δt] = λi Δ t + o(Δt) (i = 1, 2, . . . ),

其中，λi ≡ ciλ 是大小为 i 的批次的 有效到达速率。

CPP : compound Poisson process 复合泊松分布



arrival rate of size-i batches. For a CPP, it is relatively straightforward to

derive the mean and variance of N(t)(e.g., Ross, 2014): E[N(t)] = λtE[Yn], and
Var[N(t)]
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Mean and variance of N(t):

1/9) + (33/3!)(1/216)] .= 0.076. The Poisson process is special case of a

larger class of problems called renewalprocesses. A renewal process arises
from a sequence of nonnegative IID randomvariables denoting times

between successive events. For a Poisson process, theinter
show annotation

imes between successive events. For a Poisson process, theinter-event
times are exponential, but for a renewal process, they follow an

arbitrarydistribution G. Many of the properties that we
show annotation

泊松过程中，事件发生的事件间隔服从指数分布；但在更新过程中，事件发生的

时间间隔服从任意分布 G

stringent, this is not the case. A strong argument in favor of exponential

inputs is the one that often occurs in thecontext of reliability. It is the result of
the well-kno
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om the theoryof extreme values. Here, the exponential appears quite

frequently as the limitingdistribution of the (normalized) first-order statistic
of random samples drawn fromcontinuous populations (see Problem 1.10 for

one such example). There is also anadditional argu

E[N(t)] = λtE[Yn]

Var[N(t)] = λtE[Y 2
n ]

Renewal Process : 更新过程

更新过程是 非负独立同分布 随机变量的集合，这些随机变量表示连续发生的
事件之间的事件间隔。
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通过观察从连续总体中抽取的随机样本可以发现，随机样本（归一化后的）第一

顺序统计量的极限分布通常为指数分布。

omes out of information theory. It is that the exponentialdistribution is the

one that provides the least information, where information content
DISCRETE-TIME MARKOV CHAINS 49or
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指数分布是提供信息量最少的分布

指数分布 f(x) 的信息量或负熵被定义为：

∫ f(x) log f(x) d x

2.3 Discrete-Time Markov Chains

.2.3 Discrete-Time Markov Chains In this section, we consider a class of

models in which the system transitions amonga discrete set of states at
various points in time . Figure 2.3 shows an example sy
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lf or to state 2, and so forth. Inqueueing applications, the system state is

often defined as the number of customers inthe system, in which case the
state space is the set of nonnegative integers 0,1,2,... .0132Figure 2.3 Markov

chain wit
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马尔可夫链的基本假设是具有 马尔可夫性，即

Pr{Xn+1 = j|X0 = i0, X1 = i1, ⋯ , Xn = in} = Pr{Xn+1 = j|Xn = in}

Xn = in}= Pr{Xn+1 = j|Xn = in}.I Intuitively, the Markov property states that if

the “present” state of the system (Xn) is known, then the “future” (Xn+1) is
independent of the “past” (X0, . . . Xn−1) . Inother words, in order to cha
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这表明如果系统当前的状态是已知的，那么未来的状态与过去的状态无关。

relevant given thepresent state. The conditional probabilities
Pr{Xn + 1 = j|Xn = i} are called the single-step transition probabilities or

just the transition probabilities. Often these probabilitiesare ass
show annotation

arkov chain (e.g., Section 6.3). For a Markov chain, one may be interested in
the m-step transition probabilities,defined as the probability of being in state

j exactly m steps after being in state i .More precisely, the m-step tran
show annotation

= i},which is independent of n. Let P (m) be the matrix formed by the elements
p

(m)
ij  .From the basic laws of probability , it can be shown thatP(m) = P ·

show annotation

tep matrix P by itself m times. This is the matrix equivalent of thewell-known

Chapman Kolmogorov (CK) equations for this Markov process .A similar
argument can be used
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2.3.1 Properties of Markov Chains

associated with Markov chains. State j is accessiblefrom state i(i → j) if
there exists an n ≥ 0 such that p(n)

ij > 0. That is, there is some path from i to j

with nonzero probability . Two states i and j communicate

show annotation

CK equation: 查普曼-科尔莫戈罗夫方程 (Chapman-Kolmogorov equation)

1. 如果存在 n ≥ 0，使得 p(n)
ij > 0， 则系统可以从状态 i 到达状态 j (i → j)，即

存在从状态 i 到状态 j 的非零概率路径。

2. 连通 (cummunicate)：如果 i → j 且 j → i，则称状态 i 和状态 j 是连通的
i ↔ j。



erwise, the state is transient. More precisely, let f (n)
jj  be the probability that a

chain starting in state j returns for the first time to j in n transitions. The

probabilitythat the chain ever returns to j is fjj =∞∑n=1f(n)jj .†A state j is
show annotation

设马尔可夫链从状态 j 除法，转移 n 步之后首次返回状态 j 的概率为 f (n)
jj ，则该链

返回状态 j 的状态之和为

fjj =
∞

∑
n=1

f
(n)
jj

如果 fjj = 1，则状态 j 是常返的；如果 fjj < 1 ，则状态 j 是瞬时的。当 fjj = 0

时，

mjj =
∞

∑
i=1

nf
(n)
jj

表示 平均回转时间 (mean recurrence time)。此时，又有以下分类：

7. 正常返的 (positive recurrent) ：mjj < ∞

8. 零常返的* (positive recurrent) ：mjj = ∞

null recurrence and transience. The period of astate j is the greatest common
divisor of integers m such that p(m)jj > 0. A state withperiod 1 is said to be

aperiodic .EXAMPLE 2.7Consider the followi
show annotation

3. 等价类 (communication class)：性质2 将马尔可夫链的状态划分为多个互不

相交的子集，被称为等价类。

一个等价类中的所有状态都是连通的，并且该等价类中的状态不与任何其

他等价类中的状态想连通。

4. 不可约的 (irreducible)：如果一个马尔可夫链的所有状态都是连通的，系统可

以从任意状态到达任意其他状态，则称为不可约，否则，称为 可约的
(reducible)

5. 常返的 (recurrent) ：从状态 j 除法，返回状态 j 的概率为 1；否则称状态 j 为

瞬时的 (transient)



状态 j 的 周期 (period) 是满足 p(m)
jj > 0 的所有正整数 m 的最大公约数。周期为 1

的状态是 非周期的 (aperiodic)

2.3.2 Long-Run Behavior

ARKOV CHAINS 53In this example, the limiting matrix has the property that
the rows are the same. Thismeans that, a long time into the future, the

probability of being in a particular statedoes not depend on the starting
state. For example, if the system star
show annotation

if thesystem starts in state 1. This particular behavior does not hold for all

Markov chains. First, it is not alwaysthe case

show annotation

Note : 但并不是所有的马尔可夫链都有这种特殊的行为。因为

, the rows may notbe identical. This motivates discussion of three related

concepts having to do withlong-run behavior, limiting distributions, stationary
distributions, and ergodicity. We start by defining the limitin

show annotation

y distributions, and ergodicity. We start by defining the limiting probabilities

of a Markov chain as πj ≡ limn→∞p(n)ij . (2.14)This d
show annotation

马尔可夫链的极限概率为：

1. n → ∞ 时，P n 并非总是收敛的；

2. 如果 pn 收敛，矩阵每行的元素可能并不相同。
由此，可以引出马尔可夫链的长期行为相关的 3 个概念：

极限分布 (limiting distributions)

平稳分布 (stationary distributions)

遍历性 (ergodicity)



πj ≡ lim
n→∞

p
(n)
ij

∑k[limm→∞p(m−1)ik]pkj= ∑kπkpkj. The step of rearranging the brackets
requires switching a limit and a sum. If theMarkov chain has an infinite

number of states (i.e., P is an infinite-dimensionalmatrix), then this step must
be justified more carefully (e.g., see Harchol-Balter,2013)

show annotation

tence of a limitingdistribution. Theorem 2.13 An irreducible and positive

recurrent discrete-time Markov chainhas a unique solution to the stationary
equations π = πP and ∑jπj = 1, (2.16)namel

show annotation

定理 对于一个不可约且正常返的离散时间马尔可夫链，一下平稳方程组有唯一解：

π = πP and ∑
j

πj = 1

即 πj = 1/mjj，如果该马尔可夫链是非周期性的，则极限分布存在并且与平稳分布

相同。

to the stationary distribution. By this theorem, there are two main ways to
interpret the value of πj . The firstinterpretation is tha

show annotation

to interpret the value of πj. T he firstinterpretation is that πj is the the long-

run fraction of time spent in state j. This comesfrom the fact that πj = 1/mjj .
Recall that mjj is the mean ti

show annotation

nstate j (from renewal theory). The second interpretation is that πj is the

probabilityof being in state j a long time from now (more precisely, πj is a
limiti

show annotation

Example



因为所有的状态都是连通的，所以该马尔可夫链是 不可约 的，且是 正常返的。具

有有限状态数的不可约马尔可夫链一定是正常返的。带入上式中的平稳方程组可

得：

Results:

⎧⎪⎨⎪⎩π0 = 0.3π2

π1 = 0.2π0 + 0.6π2

π2 = 0.8π0 + π1 + 0.1π2

π0 + π1 + π2 = 1

import numpy as np

p = np.array([[0, 0.2, 0.8],[0,0,1],[0.3,0.6,0.1]])
np.linalg.matrix_power(p,10)
np.linalg.matrix_power(p,40)

language-python

array([[0.17133537, 0.36886623, 0.4597984 ],
       [0.18579266, 0.39428656, 0.41992079],
       [0.12597624, 0.289111  , 0.58491276]])

array([[0.15312356, 0.3368443 , 0.51003214],
       [0.15317288, 0.33693102, 0.50989611],
       [0.15296883, 0.33657224, 0.51045893]])

language-results



状态转移图

er in System1 2 3 41 p p p qp... This chain is the embedded discrete-time

Markov chain for the M/M/1queue (see Example 2.15), where the state of
the system is measured onlywhen an arrival or departure occurs (i.e., at

discrete points in ti
show annotation

n probability matrixP =(0 11 0). The chain is irreducible and positive
recurrent, so it has a unique solution tothe stationary equations. We can

solve (2.16) to get the
show annotation

c chain tobe positive recurrent. Theorem 2.14 An irreducible, aperiodic chain
is positive recurrent if there exists anonnegative solution of the system

∞∑j=0pijxj ≤xi −1 (i 6= 0)such t
show annotation

2.3.3 Ergodicity

∞∑j=0p0jxj < ∞.2.3.3 Ergodicity Closely associated with the concepts of

limiting and stationary distributions is theidea of ergodicity, which has to do
with the information contained in one infinitelylong sample path of a process
(e.g., Papoulis, 1991). Ergodici

show annotation



遍历性与极限分布和平稳分布密切相关，并且与包含在某个过程中的无限长样本

路径中的信息有关。

process (e.g., Papoulis, 1991). Ergodicity is important in that itdeals with the

problem of determining measures of a stochastic process X(t) from asingle
realization, as is often done in analyzing simulation output . X(t) is ergodic

inthe most gen
show annotation

遍历性可以帮助我们基于过程的单个样本实现来确定随机过程 X(t)的统计指标。如

果 X(t) 的所有指标都可以基于过程的单个样本实现 X0(t) 来确定或较为准确地估

算，那么 X(t) 在一般意义上是 遍历的。

lization X0(t) of the process. S ince statistical measures of theprocess are

usually expressed as time averages, this is often stated as follows: X(t)is
ergodic if time averages equal ensemble averages. (Here, the time parameter

t isc
show annotation

随机过程平均值等于集合平均值

average versus ensemble average. For a nonstationary process, the
ensemble average m(t) might be different atdifferent values of t. For

example, if a queueing system starts in an empty state, thenthe ensemble
average at t = 0 will be different than the ensemble average at somelarge

value of t, where the system is in steady state . Nevertheless, we might
imagine

show annotation

nt) ifx = limt→∞m(t) < ∞. (2.18) That is, the ensemble average m(t)

converges to a limit as t → ∞ and this limitingvalue equals the time average .
For a stationary process, the

show annotation

sted in fully ergodic processes. We now discuss the link between a limiting

distribution, a stationary distribution, and ergodicity. Consider a DTMC that is



irreducible and positive recurrent. Such a chain has a unique stationary

distribution {πi} by Theorem 2.13 . Furthermore,πi is the long-run
show annotation

2.4 Continuous Time Markov Chains

2.4.1 Embedded Markov Chains

A (time-homogeneous) continuous-time Markov chain (CTMC) is a stochastic

pro-
cess {X(t), t ≥ 0} with a countable state space, such that:

Note : 连续时间（齐次）马尔可夫 （CTMC）从一个状态转移到另一个状态的过程

与离散时间马尔可夫链 （DTMC）相似，但是 CTMC 在每个状态停留的时间是 连
续型指数随机变量。由 转移矩阵 {pij} 定义的 DTMC 被称为嵌入离散时间马尔可夫

链（embedded discrete-time Markov chain）。

e back to itself are notallowed. In continuous time, the Markov property can

be stated as Pr{X(t + s) = j|X(t) = i,X(u),0
show annotation

在连续时间上， 马尔可夫性可以表述为：

Pr{X(t + s) = j|X(t) = i, X(u), 0 ≤ u < t} = Pr{X(t + s) = j|X(t) = i}

2.4.1 Embedded Markov Chains

S 652.4.1 Embedded Markov Chains In many of the situations in this text
requiring the use of a continuous-time queueingmodel, we can often get

satisfactory results by looking at the state of the systemonly at certain
selected times , leading to an embedded discret

show annotation

1. Each time the process enters state i, it remains in that state for a period of

time that is exponentially distributed with rate vi (independent of the past).

2. When the process departs state i, it goes to state j ≠ i with probability pij

(independent of the past).



在许多场景中，要求使用连续时间排队模型，在这些场景下，通常需要在特定时间

点观察系统的状态，由此，引入 嵌入离散时间马尔可夫链 来解决此类问题。

owing the nth state transition. Asdiscussed previously, if the system is in

state i ≥1, the next event is an arrivalwith probability λ/(λ+μ) and a service
completion with probability μ/(λ+μ). When i = 0 (empty system), the n

show annotation

定理2.4，只有两个事件

dded discrete-timeMarkov chain. More generally, there are some

continuous-time processes that arenot CTMCs but still have embedded
discrete-time Markov chains. For instance,processes associate

show annotation

2.4.2 Chapman-Kolmogoroc Equations

4.2 Chapman–Kolmogorov Equations For a DTMC, we were able to

determine the n-step transition probabilities via theChapman–Kolmogorov
equations. From this, we obtained an expli

show annotation

ystem of differential equations. Theorem 2.15 Let pi(t) be the probability that

the system is in state i at time t, let p(t) be the vector (p0(t), p1(t), ⋯), and let
p′(t) be the vector of its derivatives.Then p′(t) = p(t)Q. (2.21)66 REVIEW O

show annotation

定理 设 pi(t) 为系统在时刻 t 处于状态 i 的概率， p(t) 表示向量 (p0(t), p1(t), ⋯)，

且 p′(t) 为 p(t) 的导数，则：

p′(t) = p(t)Q

其分量形式为：

p
′
j(t) = −vjpj(t) +∑

r≠j

pr(t)qrj



2.4.3 Long-Run Behavior

lsewhere.2.4.3 Long-Run Behavior The same concepts of stationarity and

steady state apply for the continuous-timecase, with t replacing n in the
limiting process. For example, analogous to (2.14

show annotation

stated in the followingtheorem. Theorem 2.16 For a continuous-time Markov

chain, if the embedded discrete-timechain is irreducible and positive
recurrent, then there is a unique solution to the PROBLEMS 69stationary

equations0
show annotation

定理 2.16 对于一个连续时间马尔可夫链，如果其对应的嵌入离散时间马尔可夫链是
不可约且正常返的，那么以下平稳方程组存在唯一解：

{

其中，0 是零向量。

to 0,then (2.21) becomes 0 = pQ. Compared to a discrete-time chain
(Theorem 2.13), aperiodicity is not required forthe limiting distribution to

exist in a continuous-time Markov chain . This is becausethe times betwe
show annotation

3. Simple Markovian Queueing Models
theoryof birth death processes. Recall that a birth death process is a specific
type ofcontinuous-time Markov chain whose structure leads to a

straightforward solutionfor the steady-state probabilities {pn} . Examples of
queues that can be

show annotation

dent arrival and service rates. Webegin with the general theory of birth death

process. Then we apply these results toobtain measures of effectiveness for

0 = pQ

∑
j

pj = 1



the queueing systems given above .3.1 Birth Death ProcessesA birt

show annotation

3.1 Birth-Death Processes

above.3.1 Birth Death Processes A birth death process consists of a set of
states {0, 1, 2, . . . }, typically denoting the“population" of some system .

State transitions occur as uni
show annotation

从 Sec 2.4.3 定理2.16 中可知，该系统存在一个解，基于 0 = pQ，且当 λn 和 μn

有一定的条件限制时，可以求得该解。对于生灭过程，向量矩阵的分量形式为：

也可以写为（流量平衡，flow balance）：

第一个式子左边表示从状态 n 转移 出去 的速率，右边表示从其他状态 进入 状态 n
的速率。

1pn+1 (n ≥ 1), (3.1)λ0p0 = μ1p1. These equations can also be obtained using
the concept of flow balance. The basicidea is this: In steady state, the rate of

transitions out of a given state must equal therate of transitions into that

0 = −(λn + μn)pn + λn−1pn−1 + μn+1pn+1

0 = −λ0p0 + μ1p1

(λn + μn)pn = λn−1pn−1 + μn+1pn+1

0 = −λ0p0 + μ1p1



state. As we illustrate in a moment, t

show annotation

求解可以得到：

pn =
λn−1λn−1 ⋯ λ0

μnμn−1 ⋯ μ1
p0 = p0

n

∏
i=1

λi−1

μi

, n ≥ 1

进而可以求解得到：

po = (1 +
∞

∑
n=1

n

∏
i=1

λi−1

μi

)

−1

∏i=1λi−1μi)−1. (3.4)From (3.4), we see that a necessary and sufficient

condition for the existence of asteady-state solution is the convergence of
the infinite serie s1 + ∞∑n=1n∏i=1λi−1μi.As we will

show annotation

可以发现，稳态存在解的充要条件是无穷级数收敛。

可以发现，稳态存在解的充要条件是以下无穷级数收敛：

1 +
∞

∑
n=1

n

∏
i=1

λi−1

μi

) and (3.4)starting from (3.1). The equations in (3.1) are called global balance
equations, since they equate the total mean flow into each state with the

total mean flow out of that state .Yet there is an alternate set o
show annotation

整体平衡方程

两种不同思路：

上述方法称为 整体平衡方程 (global balance equation)

局部平衡方程 (detailed balance equation) 。正如稳态时 流入和流出 一个状

态的平均流量必须相等，稳态时向左和向右通过分界线的平均流量也必须相



we can know:

1 and n, as shown in Figure 3.2. Just as mean flows into and out of a state
must be equal in steady state, so alsomean flows across the barrier must be

equal in steady state. This can be seen asfollows: If
show annotation

global balance equations (3.1). It is not true for all Markov chains that the

mean flows between two states areequal. The equating of these adjacent
show annotation

ws between two states areequal. The equating of these adjacent flows
relates to something called reversibility,a concept that becomes particularly

useful later in our work on queueing networks (see Section 5.1.1 and also
Sect

show annotation

等。如下图

λn−1pn−1 = μnpn

pn =
λn−1

μn
pn−1

可逆性 (reversibility)



tates candirectly communicate. F or more general Markovian models, this is

not necessarilytrue. However, for all Markovian models, equating the total
flow out of a state withthe total flow into the state always yields the global

balance equations , from whichthe {pn} can be dete
show annotation

Note : 并非所有马尔可夫链的两个状态之间的 平均流量 都想等 （与 可逆性 有
关）。但是，对于所有马尔可夫过程，流出一个状态的总流量与流入该状态的总流

量想等，所以一定可以得到整体平衡方程，从而可以求得 {pn}。

3.2 Single Server Queues (M/M/1)

更多知识查看：

Notes for Queueing Theory

13 排队论

1. 背景知识

1.1 Notation

1971 年，国际排队符号标准会上扩展至六项，记为 (X/Y /Z/A/B/C)：

e.g. M/M/1/∞/∞/FCFS

肯德尔记号 (Kendall)：输入分布/输出分布/并联服务台数（X/Y /Z）

输入分布/输出分布/并联服务台数/系统容量（队长）/系统状态（顾客源数）/服
务规则

language-markdown

泊松流

Pn(t) =
(λt)n

n!
e−λt



1.2 级数展开

基本幂级数

负指数分布

PDF:

fT (t) = {

CDF:

FT (t) = {

λe−λt, t ≥ 0
0, t < 0

1 − e−λt, t ≥ 0
0, t < 0

爱尔朗分布 Ek

设 v1, ⋯ , vk 是 k 个相互独立的随机变量，服从相同参数 kμ 的负指数分

布，那么：

T = v1 + v2 + ⋯ + v)k

PDF:

bk(t) =
μk(μkt)k−1

(k − 1)!
e−μkt t > 0

ex =
∞

∑
n=0

1

n!
xn, − ∞ < x < +∞

sin x =
∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1, − ∞ < x < +∞

1

1 + x
=

∞

∑
n=0

(−1)nxn, − 1 < x < +1

推广



泰勒展开

f(x) =
f(x0)

0!
+

f ′(x0)

1!
(x − x0) +

f ′′(x0)

n!
(x − x0)2 + ⋯ +

f (n)(x0)

n!
(x − x0)n +

拓展：麦克劳林公式

佩亚诺余项为 (x − x0)n 的高阶无穷小：Rn(x) = o[(x − x0)n]

1.2 运行指标

排队系统运行指标间的关系：

cos x =
∞

∑
n=0

(−1)n

(2n)!
x2n, − ∞ < x < +∞

1

1 + x2
=

∞

∑
n=0

(−1)nx2n, − 1 < x < +1

ln(1 + x) =
∞

∑
n=0

(−1)n

n + 1
xn+1, − 1 < x < +1

ax = exlna =
∞

∑
n=0

(ln a)n

n!
xn, − ∞ < x < +∞

arctan x =
∞

∑
n=0

(−1)n

2n + 1
x2n+1, − 1 ≤ x ≤ +1

ex = 1 + x +
1

2!
x2 + ⋯ +

1

n!
xn + o(xn)

sin x = x −
1

3!
x3 + ⋯ +

(−1)m−1

(2m − 1)!
x2m−1 + o(x2m−1)

cos x = 1 −
1

2!
x2 + ⋯ +

(−1)m

(2m)!
x2m + o(x2m)

ln(1 + x) = x −
1

2
x2 + ⋯ +

(−1)n−1

n
xn + o(xn)

λ：单位时间内顾客的平均到达数，则 1/λ 表示向量两个顾客到达的平均时
间；



有三种方法求解 {pn}：

排队系统中运行指标之间的关系：

Ws 的 PDF可以表示为:

f(Ws) = (μ − λ)e−(μ−λ)t

μ：单位时间内被服务完毕离去的 平均顾客数，1/μ 表示对每个顾客的 平

均服务时间

S：服务系统中并联的服务台数

Pn(t)：时刻 t 系统中恰有 n 个顾客的概率。

Ls = λWs Ws =
Ls

λ

Lq = λWq Wq =
Lq

λ

Ls = Lq +
λ

μ
Ws = Wq +

1

μ

Ls =
∞

∑
n=0

nPn Wq = Ws −
1

μ
=

ρ

μ − λ

Lq =
∞

∑
n=0

(n − s)Pn =
ρλ

μ − λ

M/M/1/∞/∞

P0 = 1 − ρ

Pn = ρnP0

Ls =
∞

∑
n=0

nPn = ρ(1 − ρ)(
1

1 − ρ
)

′

=
ρ

1 − ρ
=

λ

μ − λ

Ws =
Ls

λ

Lq = Ls −
1

μ

Wq =
L1

λ

1. 迭代法 Iterative Method



-tion 1.5 for all G/G/1 queues. In summary, the full steady-state solution for
theM/M/1 system is the geometric probability function pn = (1 − ρ)ρn (ρ = λ/μ

< 1). (3
show annotation

得到 {pn} 为

pn = (1 − ρ)ρn

= (1 − ρ)ρn (ρ = λ/μ < 1). (3.9) We emphasize that the existence of a steady-

state solution depends on the conditionthat ρ < 1, or equivalently, λ < μ . This
makes intuitive sense, for

show annotation

in comparisonwith other models. Finally, we note that for some models, it is

relatively easy to find a closed expression for P(z), but quite difficult to find
its series expansion to obtain the {pn} .However, even if the series exp

show annotation

3.2.4 Measures of Effectiveness

.3.2.4 Measures of Effectiveness The steady-state probability distribution for

the system size allows us to calculatethe system’s measures of effectiveness.
Two of immediate interest are t

show annotation

设随机变量 N 表示稳态时系统中的顾客数，L 表示其期望，则

2. 母函数法 Generating Functions

3. 线性算子 Operators

系统中平均顾客数 L

可以根据系统的稳定概率分布来计算系统的效益指标。首先考虑当系统处于稳

态时，系统中顾客数的期望和队列中顾客数的期望。



L = E[N ] =
∞

∑
n=0

npn

= (1 − ρ)
∞

∑
n=0

nρn

= ρ(1 − ρ)
∞

∑
n=0

nρn−1

= ρ(1 − ρ)(
1

1 − ρ
)

′

=
ρ(1 − ρ)

(1 − ρ)2

=
ρ

1 − ρ
=

λ

μ − λ

平均队列长度 Lq

Lq =
∞

∑
n=1

(n − 1)pn

=
∞

∑
n=1

npn −
∞

∑
n=1

pn = L(1 − p0)

=
ρ

1 − ρ
− ρ

=
ρ2

1 − ρ
=

λ2

μ(μ − λ)

队列不为空时的平均队列长度 L′
q

其中，p′
n 表示队列不为空时的条件下系统的顾客数为n 的条件概率。

L
′
q = E[Nq|Nq ≠ 0] =

∞

∑
n=1

(n − 1)p
′
n =

∞

∑
n=2

(n − 1)p
′
n

{ }



3.2.5 等待时间的分布

Then

p
′
n =

Pr{n in system and n ≥ 2}

Pr{n ≥ 2}

=
pn

∞

∑
n=2

pn

(n ≥ 2)

=
pn

1 − p0 − p1
=

pn

1 − (1 − ρ) − (1 − ρ)ρ

=
pn

ρ2

L
′
q =

∞

∑
n=2

(n − 1)p
′
n

=
∞

∑
n=2

(n − 1)
(1 − ρ)ρn

ρ2

= (1 − ρ)
∞

∑
n=2

(n − 1)ρn−2

= (1 − ρ)(
∞

∑
n=0

nρn−1)

= (1 − ρ)(
1

1 − ρ
)

′

=
1

1 − ρ
=

μ

μ − λ

顾客在系统中的平均等待时间W

W =
L

λ
=

ρ

λ(1 − ρ)
=

1

μ − λ

队列中的平均等待时间Wq

Wq =
Lq

λ
=

λ

μ(μ − λ)
=

ρ

μ − λ



$$

等待总时间的分布

在系统中的总等待时间为服从期望为 1/(μ − λ) 的指数分布随机变量，即：

W(t) = 1 − e−(μ−λ)t, t ≥ 0

w(t) = (μ − λ)e−(μ−λ)t, t > 0

排队时间的分布

可以看作是按照 ρ 的概率服从指数分布，1 − ρ 的概率排队时间为 0

Wq(t) = 1 − ρ + ρ(1 − e−(μ−λ)t) = 1 − ρe−(μ−λ)t


