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Decision is a risk rooted in the courage of being free.
— Paul Tillich

Lectures:
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1. Introduction

Queueing theory attempts to answer these
questions through detailedmathematical analysis

show annotation

There are many valuable applications of
queueing theory including traffic flow(vehicles, aircraft, people,
communications), scheduling (patients in hospitals, jobson machines,
programs on a computer), and facility design (banks, post
offices,amusement parks, fast-food restaurants).

show annotation

1.1 Measures of System Performance

Figure 1.1 shows a typical queueing
system: Customers arrive, wait for service,receive service, and then leave the
system.
show annotation

What might one like to know about the effectiveness of a queueing system?
Generally there are three types of system responses of interest:

&R . waiting time that a typical customer might endure,



FATIER R ST : the number of customers that may accumulate
in the queue or system,

AR S5 RN . idle time of the servers.

Since most queueing systems have stochastic
elements,these measures are often random variables, so their probability
distributions — or atleast their expected values — are sought

show annotation

waiting times, there are two types — the
time a customer spends inthe queue and the total time a customer spends in
the system (queue plus service)
show annotation

W, : The average waiting time of a typical customer in queue;
W : The average waiting time in the system;

L, : The average number of customers in the queue;

L : The average number of customers in the systems;

there are two customer accumulation
measures — the number ofcustomers in the queue and the total number of
customers in the system
show annotation

The task of the queueing analyst is
generally one of two things — to determinesome measures of effectiveness
for a given process or to design an “optimal” systemaccording to some



criterion.
show annotation

To design the waiting facility, it is
necessary to haveinformation regarding the possible size of the queue .

show annotation

Ultimately,the issue generally comes down to
a trade-off between better customer service andthe expense of providing
more service capability, that is, determining the increase ininvestment of
service for a corresponding decrease in customer delay

show annotation

1.2 Characteristics of Queueing System

A quantitative evaluation of a queueing
system requires a mathematical characteri-zation of the underlying
processes. In many cases, six basic characteristics providean adequate
description of the system:

show annotation

In many cases, six basic characteristics provide an adequate description of the
system:

ZERIZ)XTFE Arrival pattern of customers

AR FAMIARSS T 42 Service pattern of servers

ARSS G RIENEFN AR S @IERIELE Number of servers and service channels
HERAFLNI System capacity

REA = Queue discipline

AR B EXAYENE Number of service stages

1.2.1 Arrival Pattern of Customers



A common arrival process is the Poisson pro-
cess, which will be described in Section 2.2
show annotation

An arrivalpattern that does not change with
time (i.e., the probability distribution describingthe input process is time-
independent) is called a stationary arrival pattern. Onethat is not time-
independent is called nonstationary.

show annotation

(balked)

If a customerdecides not to enter the queue
upon arrival, the customer is said to have balked.

show annotation

(Reneged)

Acustomer may enter the queue, but after a
time lose patience and decide to leave. Inthis case, the customer is said to
have reneged
show annotation

(jockey)

In the event that there are two or
moreparallel waiting lines, customers may switch from one to another, that is,
jockey forposition
show annotation

1.2.2 Service Patterns

One generally thinks of one customer
beingserved at a time by a given server, but there are many situations where
customersmay be served simultaneously by the same server




show annotation

(state-dependent service)

The situation in which service depends on
the number ofcustomers waiting is referred to as state-dependent service

show annotation

RETEIARSS

1.2.3 Number of Servers

Thus, when specifying the number ofparallel
servers, we typically assume that the servers are fed by a single line. Also, it is
generally assumed that the servers operate independently of each other.

show annotation

1.2.4 Queue Discipline

Queue discipline refers to the manner in
which customers are selected for servicewhen a queue has formed.

show annotation

DB HERARLI :

: first come first served 525 ARSS
: last come first served FEI5cARSE
: random selection for service ENLARSS
: processor sharing {MEZEHE
(508 (— RSB R AZTFEIINMERMERS, SRS E—FATIHY
MED, AERSE_TINIIME, DALLZEHE)



There are two general situations in priority
disciplines, preemptive andnonpreemptive.
show annotation
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1.2.5 System Capacity

These are referred to as finite
queueingsituations; that is, there is a finite limit to the maximum system size.

show annotation

1.2.6 Stages of Service

Recycling is commonin manufacturing
processes, where quality control inspections are performed aftercertain
stages, and parts that do not meet quality standards are sent back for repro-
cessing.
show annotation

1.2.7 Notation

As shorthand for describing queueing
processes, a notation has evolved, due for themost part to Kendall (1953),



which is now rather standard throughout the queueingliterature

show annotation

A queueing process described by a series of symbols and slashes (F}2%)
A/B/X]Y/Z:

A : denotes the inter-arrival time distribution (Z3XRT 8] B])F8 % 70)
B : service time distribution (BRZZ /8% %)

* 1.1 HPRG%RRE A/B/X /Y /Z
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Rather, M is used, standing for the Markovian
or memoryless propertyof the exponential (described in Section 2.1)

show annotation

1.2.8 Model Selection

If customers choose a checkout counter on
a purely random basis (withoutregard to the queue length in front of each
counter) and never switch lines (nojockeying), then we have c independent
single-server models.
show annotation

As jockeying is rather easy to accomplish
in supermarkets, the c-servermodel with one queue may be more
appropriate and realistic than c independentsingle-server models, which one
might have been tempted to choose initially prior togiving much thought to
the process.
show annotation

1.3 The Experience of Waiting

This section summarizes several
principles, proposed by Maister (1984),related to the experience or
psychology of waiting.
show annotation

Unoccupied time feels longer than occupied time.
Pre-process wait feels longer than in-process wait.
Anxiety makes waiting seem longer.

Uncertain waits are longer than known, finite waits.
Unexplained waits are longer than explained waits.
Unfair waits are longer than equitable waits.

Longer waits are tolerable for more valuable service.

Solo waits feel longer than group waits.



1.4 Little's Law

A fundamental relationship that is used
extensively in queueing theory and throughoutthis text is Little’s law.

show annotation

Little's law provides a relationship between three fundamental quantities: The
average rate X that customers arrive to a system, the average time W that a
customer spends in the system, and the average number L of customers in the
system.

L=\W

The second limit W is thelong-run average
time spent in the system per customer. The third limit L is thelong-run
average number of customers in the system
show annotation

Theorem 1.1 [Little’s law] If the limits A and
W in (1.1) exist and are finite, thenthe limit L exists and

show annotation

Before giving examples, we make some
general remarks about Little’s law.
show annotation

FELREAEFZrl, |TEX Little AN HIT—E—RIERVARTFWHR:

FEATFITEKEFESE, BN L, W H#EX A TS RR;

FIEER NN W BIRRFE, XMHR T S E TR R AIER TR
BB ;

FIEGHERDIFE—TINY, BEREFE—TRSR, MEAURXNSHF
RS,

1.4.1 Geometric lllustration of Little's Law



We now give a geometric “proof” of Little’s law.
This is not a rigorous proof, butrather a rough argument showing the main
ideas behind Little’s law.
show annotation

2. Review of Stochastic Processes

This chapter provides an overview
of key concepts in stochastic processes usedthroughout this text

show annotation

2.1 The Exponential Distribution

In queueing theory, the exponential
distribution is often used to model the time until aparticular event occurs

show annotation

We will see (Section 2.2) that the exponential
distribution isclosely connected with the Poisson process, another widely
used model in queueingtheory.

show annotation
D IRMIBER D RIBEN EE R E LB ENEE, H pdf J9:
HOEP
AR MIEE D TAVBENZE T /Y (cumulative distribution function,
CDF). (complementary cumulative distribution function,

CCDF). HAEMAERILETEBREERIKRST, DHIRRN:

Ft)=Pr{T <t} =1—e
Ft)=Pr{T >t} =
E[T] =+, Var[T]= 3



Definition 2.1 An exponential random
variable is a continuous random variablewith probability density function
(PDF):
show annotation

Pr{T >t+s|T > s} =Pr{T >t} (s,t>0)

Theorem 2.1 An exponential random variable
has the memoryless property

show annotation
Note that
Pr{T >t+s,T > s} = Pr{T >t + s} (if T is bigger than t + s, then it is also
bigger than s).
show annotation
Theorem 2.4 Let T4, - - - , T, be independent
exponential random variables with rates A+, - - -, \,,, respectively. Then
show annotation
Pr{T; = min{T T,}} = Ai
T 1y y4n M A+ -+ An

Theorem 2.5 Let T1,...,Th be independent
exponential random variables withrates A1,...,An, and let T = min{T1,...,Tn}.
Then the event {Ti = T} isindependent of T
show annotation

2.2 The Poisson Process

The Poisson process is a common process
for modeling arrivals to a queueing system.Intuitively, the process can be
thought of describing events that occur “randomly” intime.

show annotation




(KEHITFE) {N(t),t > 0} : a collation of random
variables indexed by time.
(IC#UZ#E) : a stochastic process in which N(t) takes on
nonnegative integer values and is nondecreasing in time.

A counting process typicallyrepresents the
cumulative number of events that have occurred by time t. With
thesepreliminaries, we give a definition of the Poisson process

show annotation

Definition 2.3 A Poisson process with rate
A > 0 /s a counting process N (t) with the following properties:

show annotation

FRERF A > 0 FHRTRE, RN TIE:

N(0) =0

Pr{1 event betweent and t + At} = A At + o( At).

Pr{2 or more events betweent and t + At} = o(At).

The numbers of events in nonoverlapping intervals are statistically
independent; that is, the process has independent increments (J#i7 1% =0

7=).

Definition 2.4 A Poisson random variable is
a discrete random variable with prob-ability mass function

show annotation

HNENEEEBHENEE, ESRREREN:

Hep, ARKT ORUER, ARNEE X (BN A ZED BN



EX]=A,Var[X]=A4

Poisson processes have a number of
interesting additional properties, which arestated in the following theorems.
The first result is that a Poisson process hasstationary increments. This
means that the distribution of the number of events ina given time interval
(i.e., an increment) depends on the length of the interval butdoes not depend
on the absolute location of the interval in time

show annotation

he notion that event times are “completely
random” comes from the factthat they are uniformly distributed in time.
However, we must be precise about whatwe mean by “event times.”
Specifically, we must distinguish between ordered and un-ordered event
times.
show annotation

One important consequence of the
uniform property of the Poisson process is thatthe outcomes of random
observations of a stochastic process X(t) have the sameprobabilities as if the
scans were taken at Poisson-selected points
show annotation

Theorem 2.10 (Splitting)

show annotation

Theorem 2.11 (Superposition)

show annotation




2.2.1 Generalizations of the Poisson Process

The first generalization considered is a
nonhomogeneous Poisson process (NHPP).A NHPP can be thought of as a
Poisson process where the arrival rate A is replaced bya time-dependent
function A(t)
show annotation

Definition 2.5 A nonhomogeneous
(or nonstationary) Poisson process is a Poissonprocess (Definition 2.3) in
which assumption 2 is replaced by the following

show annotation

RIE X9
Pr{1 arrival between ¢t and ¢t + At} = A\(t)At + o(At)

MEXFAALI, HEARR \(t) £—RKHFERE ¢ T,
P HIETTRIBMEIZRENARR A(¢) B 720, RREIRSTRBMAE IR AANE
HIRNTRE.

For a non-homogeneous Poisson process N(t) with mean event
rate \(t), the number of events in a time interval (s, t] is a Poisson random
variable with mean m(t) — m(s), where

The difference m(t) — m(s) can be computed by integrating A(u) @Qa

The function m(t) is sometimes called the
mean value function It represents the cumulative expected number of events
by time t.
show annotation




: compound Poisson process € &30 %

The next generalization is a compound
Poisson process (CPP).
show annotation

BIRMoRUTITERR DT, BEESRMOHMERES, BHEIRRE.

Definition 2.6 Let M (t) be a Poisson process,
and let Y,, be an i.i.d. sequence of strictly positive integer random variables
that are independent of M(t). Then

show annotation
Formulation:
M(t)
Nit)=> Y,
n=1
DR AREMA—THUR, ELERAEFREER—HUREIAT—1IER.
(WNEHRIE R ARER) BRMBMNRDf, T (WaAREL
TREEN) BRM o HFP M(t) "RinbiZl ¢t IRIIANARER, Y, {X

BEn RARFELHFREE, N(t) ZRIIZ ¢ SIRTANETREE.

For a given value of t N(t) is a compound
Poisson random variable, since the number of terms in the sumis random and
follows a Poisson distribution (and this number is independent of Yn)

show annotation
5inERaEiEELE, E8aMNdEEE R B¥RNigsE, BEAEE , B

ESHMIRERHR Sec 2.2 EXFRIER (2) AMER (3) FHRANUTIERIVEMN

HiE:

Priarrivalsin (¢t,t + At = AMi At +o(At) (i =1,2,...),

HA, A\ =cid 8BR/VA @ BIHEREY o



For a CPP., it is relatively straightforward to
derive the mean and variance of N(t)(e.g., Ross, 2014):

show annotation

Mean and variance of N(¢):

E[N(t)] = ME[Y,)]
Var[N(t)] = ME[Y?]

: BETIAE
BindiER BNEENES, XEMNEERRELRERN
EHZ BINEHERR.

The Poisson process is special case of a
larger class of problems called renewalprocesses. A renewal process arises
from a sequence of nonnegative IID randomvariables denoting times
between successive events.
show annotation

For a Poisson process, theinter-event
times are exponential, but for a renewal process, they follow an
arbitrarydistribution G.
show annotation

A strong argument in favor of exponential
inputs is the one that often occurs in thecontext of reliability.

show annotation

Here, the exponential appears quite
frequently as the limitingdistribution of the (normalized) first-order statistic
of random samples drawn fromcontinuous populations (see Problem 1.10 for
one such example).



show annotation

B EMELE SR PIHERBIBEN AR R, BEVIER (J3—1/ERY) E—
W4t ERIRIR S o8 B 18305 7.

It is that the exponentialdistribution is the
one that provides the least information, where information content

show annotation

e T e le RIS ER DI

B f(z) HEEEHRBRENN:

2.3 Discrete-Time Markov Chains

In this section, we consider a class of
models in which the system transitions amonga discrete set of states at
various points in time
show annotation

Inqueueing applications, the system state is
often defined as the number of customers inthe system, in which case the
state space is the set of nonnegative integers 0,1,2,...

show annotation

ORAIREBHNENMRISERSE , BN
PT{Xn+1 = ]lXO = ’io,Xl = ’1:1, cee 7Xn = ’Ln} = PT‘{Xn_|_1 = j'Xn = ’ln}

Intuitively, the Markov property states that if
the “present” state of the system (Xn) is known, then the “future” (X, 1) is
independent of the “past” (X, ... X, 1)




show annotation

XZKHFURZ LG HBIRVIREEEMAT, HBAKAHIRE S ZHIRE LXK

The conditional probabilities
Pr{Xn + 1 = j|Xn = i} are called the single-step transition probabilities or
just the transition probabilities.
show annotation

For a Markov chain, one may be interested in
the m-step transition probabilities,defined as the probability of being in state
j exactly m steps after being in state i
show annotation

Let P(™) pe the matrix formed by the elements
p§ i ™) From the basic laws of probability

show annotation

equation: BEEES-F/REXZ XA *E (Chapman-Kolmogorov equation)

This is the matrix equivalent of thewell-known
Chapman Kolmogorov (CK) equations for this Markov process

show annotation

2.3.1 Properties of Markov Chains

State j is accessiblefrom state i(i — j) if
there exists an n = 0 such that pg.’) > 0. That s, there is some path from i toj
with nonzero probability

show annotation

MERFEN >0, F137 pw >0, NMARGAIAMIRE i BIRIRES 5 (0 — 5), BD
T?Z_}‘A’Ikll_p\ ) ;tljzlj(u_,\ ] Eﬁngﬁﬁ%Eﬁé'f:o

(cummunicate): MR i — j B j— i, MWFRRE i MRS j BEEW
14> Jo



(communication class): ™MR2 BG5S /R KXBIVASMD R ZTEAR
HERIFE, WMAFME.
— PN EMEPHNMRERSHE2EEN, HEZFENEPIRSATEEEAHE
thFMN L PRVRSEEE
(irreducible): ZZI]%—AE_‘;/J\—Hi'fﬁﬁ’]ﬁﬁﬁ»lhuﬁllze BRY, REEA]
MMERIRSRIAEEEMIRS, WAL, B, A
(reducible)
(recurrent) @ MIRZ j BRiE, REURES 5 898EERF 1; [UFRIRES 7 A

(transient)

More precisely, let f ](J") be the probability that a
chain starting in state j returns for the first time to j in n transitions. The
probabilitythat the chain ever returns to j is
show annotation

RO RAIRGEMNAT j BE, 5558 n 5 2 B EREEIRTS j H0MER 10, Migss
&@fik/u J E,J'Iklu\Zﬂ]y‘j

fi=>_ 13

R i =1, MRS j 2B MR £ <1, MRS j SHENN, 4 ;=0
Er_l-a

my; =Y nfi}
=1
EON (mean recurrence time), LEE, XBEUTHE:
7. (positive recurrent) : m,; < oo
8. FEIRM* (positive recurrent) : m;; = oo

The period of astate j is the greatest common
divisor of integers m such that p(m)jj > O. A state withperiod 1 is said to be
aperiodic
show annotation




RS 5B (period) %2 p?) > 0 BUFR B IEEH m ImARAAE., FEHIAN 1
FPIRES 2 (aperiodic)

2.3.2 Long-Run Behavior

the limiting matrix has the property that
the rows are the same. Thismeans that, a long time into the future, the
probability of being in a particular statedoes not depend on the starting
state.
show annotation

This particular behavior does not hold for all
Markov chains.
show annotation

D BHRNEFRENS/RAIKREERE XMISTRIITA . BN

qnxR p” Hﬁh&, yElERS] ?‘"IE’JTU%T BEFAEME,
HitE, PILAS|E B /RAIREERKERT RHMERAY 3 TR

PR % (limiting distributions)
29 %h (stationary distributions)
B (ergodicity)

This motivates discussion of three related
concepts having to do withlong-run behavior, limiting distributions, stationary
distributions, and ergodicity.
show annotation

We start by defining the limiting probabilities
of a Markov chain as
show annotation

/R AT KRR BRI -



= Jim
The step of rearranging the brackets
requires switching a limit and a sum. If theMarkov chain has an infinite
number of states (i.e., P is an infinite-dimensionalmatrix), then this step must
be justified more carefully
show annotation

Theorem 2.13 An irreducible and positive
recurrent discrete-time Markov chainhas a unique solution to the stationary
equations

show annotation

HNF—T ALY HEEERNE AT E SRR, — N FRAEEBE—fF:
m=mP and Zmzl
J
Bl r; = 1/my;, WMSZD/REAKESIDERLLG, WRESHEEHES TR %
=T

By this theorem, there are two main ways to
interpret the value of 7;
show annotation

he firstinterpretation is that mij is the the long-
run fraction of time spent in state j. This comesfrom the fact that j = 1/mjj

show annotation

The second interpretation is that ij is the
probabilityof being in state j a long time from now

show annotation
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71'0:0.37'('2
7T1:0.27T0—|-0.67T2
7T2:0.87T0+7T1+0.17T2
7T0—|—7T1-|—7T2:1
import numpy as np language-python

p = np.array([[0, 0.2, 0.8],[0,0,1]1,[0.3,0.6,0.111)
np.linalg.matrix_power(p,10)
np.linalg.matrix_power(p, 40)

Results:

array([[0.17133537, 0.36886623, 0.4597984 1], language-results
[0.18579266, 0.39428656, 0.41992079],
[0.12597624, 0.289111 , 0.58491276]1])

array([[0.15312356, 0.3368443 , 0.51003214],
[0.15317288, 0.33693102, 0.50989611],
[0.15296883, 0.33657224, 0.51045893]1])



q q q q q

Number in System
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This chain is the embedded discrete-time
Markov chain for the M /M /1queue (see Example 2.15), where the state of
the system is measured onlywhen an arrival or departure occurs

show annotation

The chain is irreducible and positive
recurrent, so it has a unique solution tothe stationary equations.

show annotation

Theorem 2.14 An irreducible, aperiodic chain
is positive recurrent if there exists anonnegative solution of the system

show annotation

2.3.3 Ergodicity

Closely associated with the concepts of
limiting and stationary distributions is theidea of ergodicity, which has to do
with the information contained in one infinitelylong sample path of a process

show annotation




Ergodicity is important in that itdeals with the
problem of determining measures of a stochastic process X(t) from asingle
realization, as is often done in analyzing simulation output

show annotation

&A1 A BN FA N E T IR B MME AL USRIRE VLI RE X (¢) WRITiEIR. W
R X(t) WATBE BRI AT BT IIZRVSE MFEARSTIN X (t) ST SR /it (L
&, B2 X(t) BE—REX LR

ince statistical measures of theprocess are
usually expressed as time averages, this is often stated as follows: X(t)is
ergodic if time averages equal ensemble averages.

show annotation

For a nonstationary process, the
ensemble average m(t) might be different atdifferent values of t. For
example, if a queueing system starts in an empty state, thenthe ensemble
average at t = 0 will be different than the ensemble average at somelarge
value of t, where the system is in steady state

show annotation

That is, the ensemble average m(t)
converges to a limit as t — oo and this limitingvalue equals the time average

show annotation

We now discuss the link between a limiting
distribution, a stationary distribution, and ergodicity. Consider a DTMC that is



irreducible and positive recurrent. Such a chain has a unique stationary
distribution {m;} by Theorem 2.13
show annotation

2.4 Continuous Time Markov Chains

2.41 Embedded Markov Chains

A (time-homogeneous) continuous-time Markov chain (CTMC) is a stochastic
pro-
cess {X(t),t > 0} with a countable state space, such that:

Each time the process enters state ¢, it remains in that state for a period of
time that is exponentially distributed with rate v; (independent of the past).

When the process departs state ¢, it goes to state j # ¢ with probability p;;
(independent of the past).

: (CTMC) M—DIRSERBE S —MIRSH S 2
5 (DTMC) 1Bf}{, {ER CTMC B8NS EEWEE
. H {pi;} XK DTMC #FR ER N B 8T (8 B/RAJ K

& (embedded discrete-time Markov chain) .

In continuous time, the Markov property can
be stated as
show annotation

EESERE L, SRAIKRMERILARRN:

Pr{X(t+s)=jX(¢t) =14,X(u),0 <u<t}=Pr{X({t+s)=jX(t) =i}
2.41 Embedded Markov Chains

In many of the situations in this text
requiring the use of a continuous-time queueingmodel, we can often get
satisfactory results by looking at the state of the systemonly at certain
selected times

show annotation




FIrSRF, EXREREENEHBAMRE, AXEGRT, BEFTERISENE
RMRRZIVIAT, HILE, 5IA SRfRIRIEEZE ),

Asdiscussed previously, if the system is in
state | =1, the next event is an arrivalwith probability A/(A+u) and a service
completion with probability u/(A+u).
show annotation

More generally, there are some
continuous-time processes that arenot CTMCs but still have embedded
discrete-time Markov chains.
show annotation

2.4.2 Chapman-Kolmogoroc Equations

For a DTMC, we were able to
determine the n-step transition probabilities via theChapman—Kolmogorov
equations.
show annotation

Theorem 2.15 Let p,(t) be the probability that
the system is in state i at time t, let p(t) be the vector (py(t), p1(t),- - -), and let
p’(t) be the vector of its derivatives.Then

show annotation

% pi(t) HRGAERZ ¢ TR o (OMER, p(t) RTAE (po(t), ;1 (2), - ),
B p'(t) B p(t) WSEL, N:

Hpsfzaln:

pi(t) = —vpi(t) + Y pr(t)ar;
v



2.4.3 Long-Run Behavior

The same concepts of stationarity and
steady state apply for the continuous-timecase, with t replacing n in the
limiting process.
show annotation

Theorem 2.16 For a continuous-time Markov
chain, if the embedded discrete-timechain is irreducible and positive
recurrent, then there is a unique solution to the

show annotation

N F—T LR B /R RTE, WREIINAYERA B BT E BRI K152
AANYBIEERR, BANTFRAEHEFERE—FE:

0=pQ
2pi=1
J

Heh 02FM>
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o

Compared to a discrete-time chain
(Theorem 2.13), aperiodicity is not required forthe limiting distribution to
exist in a continuous-time Markov chain
show annotation

3. Simple Markovian Queueing Models

Recall that a birth death process is a specific
type ofcontinuous-time Markov chain whose structure leads to a
straightforward solutionfor the steady-state probabilities {p,}

show annotation

Webegin with the general theory of birth death
process. Then we apply these results toobtain measures of effectiveness for




the queueing systems given above
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3.1 Birth-Death Processes

A birth death process consists of a set of
states {0, 1, 2, . . . }, typically denoting the”population" of some system
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Figure 3.1 Rate transition diagram for a birth-death process.
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These equations can also be obtained using
the concept of flow balance. The basicidea is this: In steady state, the rate of
transitions out of a given state must equal therate of transitions into that




State.
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we see that a necessary and sufficient
condition for the existence of asteady-state solution is the convergence of
the infinite serie
show annotation

MR, RSFERNTERGEU TS REU:

The equations in (3.1) are called global balance
equations, since they equate the total mean flow into each state with the
total mean flow out of that state
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Figure 3.2 Flow balance between states.

we can know:

)\n—lpn—l = KUnPn
)\n—l

MUn

DPn = Pn-1

Just as mean flows into and out of a state
must be equal in steady state, so alsomean flows across the barrier must be
equal in steady state.
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BI3E M (reversibility)

It is not true for all Markov chains that the
mean flows between two states areequal.
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The equating of these adjacent flows
relates to something called reversibility,a concept that becomes particularly
useful later in our work on queueing networks
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or more general Markovian models, this is
not necessarilytrue. However, for all Markovian models, equating the total
flow out of a state withthe total flow into the state always yields the global
balance equations
show annotation
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3.2 Single Server Queues (M /M /1)
ERANEE:

Notes for Queueing Theory
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In summary, the full steady-state solution for
theM/M/1 system is the geometric probability function
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53 {p.} H
pn=(1—p)p"

We emphasize that the existence of a steady-
state solution depends on the conditionthat p < 1, or equivalently, A < .
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Finally, we note that for some models, it is
relatively easy to find a closed expression for P(z), but quite difficult to find
its series expansion to obtain the {p,}
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3.2.4 Measures of Effectiveness

The steady-state probability distribution for
the system size allows us to calculatethe system’s measures of effectiveness.
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