<< 2023-01-19 | 2023-01-21 >>

1. Introduction

These kinds ofproblems and the need to find
a better way to solve them provided the environment for theemergence of
operations research (commonly referred to as OR)

show annotation

Many of thestandard tools of OR, such as
linear programming, dynamic programming, queueing theory,and inventory
theory, were relatively well developed before the end of the 1950s

show annotation

Three main characteristics of OR:

The research part of the name means that operations research uses an
approach that resembles the way research is conducted in established
scientific fields.

Still another characteristic of OR is its broad viewpoint.

An additional characteristic is that OR frequently attempts to search for a
best solution (referred to as an optimal solution) for the model that
represents the problem under consideration.

As its name implies, operations
research involves “research on operations.” Thus, opera-tions research is
applied to problems that concern how to conduct and coordinate
theoperations (i.e., the activities) within an organization.
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You then will use these algorithms to solve
a variety of problems on a computer.The OR Courseware contained on the
book’s website (www.mhhe.com/hillier) will be akey tool for doing all this

show annotation

One special feature in your OR Courseware is a
program called OR Tutor. This pro-gram is intended to be your personal tutor
to help you learn the algorithms. It consists ofmany demonstration examples
that display and explain the algorithms in action. These“demos” supplement
the examples in the book
show annotation

In addition, your OR Courseware includes a
special software package calledinteractive Operations Research Tutorial, or
IOR Tutorial for short.
show annotation

After many years, LINDO (and its companion
modeling language LINGO) continuesto be a popular OR software package

show annotation

2.0verview of the Operations Research
Modeling Approach

One way of summarizing the usual
(overlapping) phases of an OR study is the following:

show annotation
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2.1 Defining the Problem and Gathering Data

It is difficult to extract a “right”answer from
the “wrong” problem!
show annotation

Frequently, the report to management
will identify a number of alternatives that areparticularly attractive under
different assumptions or over a different range of values ofsome policy
parameter that can be evaluated only by management (e.g., the trade-
offbetween cost and benefits)
show annotation

Ascertaining the appropriate objectives is a
very important aspect of problem defini-tion.
show annotation

A number of studies of U.S. corporations have
found that management tends toadopt the goal of satisfactory profits,
combined with other objectives, instead of focusingon long-run profit
maximization.
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2.2 Formulating a Mathematical Model

Mathematical models are also idealized
representations, but they are expressed in termsof mathematical symbols
and expressions
show annotation

decision variables
objective function
constraints

parameters



Determining the appropriate values to assign
to the parameters of the model (onevalue per parameter) is both a critical
and a challenging part of the model-building process
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Sensitivity anylysis

Because of the uncer-tainty about the true
value of the parameter, it is important to analyze how the solutionderived
from the model would change (if at all) if the value assigned to the parameter
werechanged to other plausible values.
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One particularly important type that is
studied in the next several chapters is thelinear programming model, where
the mathematical functions appearing in both theobjective function and the
constraints are all linear functions.
show annotation

Mathematical models have many
advantages over a verbal description of the problem
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In developing the model, a good approach
is to begin with a very simple version andthen move in evolutionary fashion
toward more elaborate models that more nearly reflectthe complexity of the
real problem.
show annotation

If there are multiple objectives, their
respective measures commonly are thentransformed and combined into a
composite measure, called the overall measure of performance
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2.3 Deriving Solutions from the Model

A common theme in OR is the search for an
optimal, or best, solution.
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However, if the model is well for-mulated and
tested, the resulting solution should tend to be a good approximation to
anideal course of action for the real problem.
show annotation

The late Herbert Simon (an eminent
management scientist and a Nobel Laureate ineconomics) pointed out that
satisficing is much more prevalent than optimizing in actualpractice. In
coining the term satisficing as a combination of the words satisfactory
andoptimizing
show annotation

“Optimizing is the sci-ence of the ultimate;
satisficing is the art of the feasible.
show annotation

In recognition of this concept,OR teams
occasionally use only heuristic procedures (i.e., intuitively designed
proceduresthat do not guarantee an optimal solution) to find a good
suboptimal solution.
show annotation

In recent years, great progress has been
made indeveloping efficient and effective metaheuristics that provide both a
general structure andstrategy guidelines for designing a specific heuristic
procedure to fit a particular kind ofproblem.
show annotation




The discussion thus far has implied that an
OR study seeks to find only one solution,which may or may not be required to
be optimal
show annotation

herefore, postoptimality analysis (analysis
done after findingan optimal solution) is a very important part of most OR
studies.
show annotation

This analysis also issometimes referred to as what-if
analysis because it involves addressing some questionsabout what would
happen to the optimal solution if different assumptions are made aboutfuture
conditions.
show annotation

In part, postoptimality analysis involves
conducting sensitivity analysis to determinewhich parameters of the model
are most critical (the “sensitive parameters”) in determin-ing the solution
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Identifying the sensitive parameters is
important, because this identifies the parameterswhose value must be
assigned with special care to avoid distorting the output of the model.
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2.4 Testing the Model

Eventually, after a long succession of
improved models, theOR team concludes that the current model now is
giving reasonably valid results. Althoughsome minor flaws undoubtedly
remain hidden in the model (and may never be detected), themajor flaws
have been sufficiently eliminated so that the model now can be reliably used
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Model validation

This process of testing and improving a
model to increase its validity is commonlyreferred to as model validation.

show annotation
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It is also useful to make sure thatall the
mathematical expressions are dimensionally consistent in the units used

show annotation
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A more systematic approach to
testing the model is to use a retrospective test.
show annotation

On the other hand, a disadvantage of
retrospective testing is that it uses the same datathat guided the formulation
of the model.
show annotation

2.5 preparing to Apply the Model

an interactive computer-based system called a
decision support system isinstalled to help managers use data and models to
support (rather than replace) their decisionmaking as needed

show annotation




Although the remainder of this book
focuses primarily on constructing and solving mathe-matical models, in this
chapter we have tried to emphasize that this constitutes only a por-tion of
the overall process involved in conducting a typical OR study
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3. Introduction to Linear Programming

However, a verbal summary may help
provide perspective. Briefly, the most common typeof application involves
the general problem of allocating limited resources amongcompeting
activities in a best possible (i.e., optimal) way
show annotation

The adjective linear means that all the
mathematical functions in this model are required to be linear functions
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The word programming does not refer here to
computer programming;rather, it is essentially a synonym for planning
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4.Solving Linear Programming Problems:
The Simplex Method

A ERZ TV RIS I R ) [a) 3 -

BIRR &AL
FIBARFZMI < ik

PIEZEBENIFRIIRIN;
FREARAIRD b, WEZEXRNIER



Optimality test: Consider any linear
programming problem that possesses atleast one optimal solution. If a CPF
solution has no adjacent CPF solutions thatare better (as measured by Z ),
then it must be an optimal solution.
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Transforming to Standard Form:

“minimize"” objective can be changed to "maximize"” by multiplying “-1."
All variables can be moved to the LHS (don’t forget to change sign).

All constants can be moved to the RHS (don't forget to change sign).
">" constraints can be changed to “<" by multiplying “—1" on both sides.

What about "=" constraints?

=" constraints can be changed to “"<" by replacing it by two constraints,
one “>"and one "<" The “>" is then transformed into “<" one by
multiplying “—1" on both sides.

e.g.
r1+x2=7
is changed to

r1+x9 > 7 r1+x9 <7
—r1 — Ty < —7 1+ a9 <7

Ademonstration of these properties is provided
by the demonstration example in your ORTutor entitled Interpretation of the
Slack Variables
show annotation




*2 Maximize Z = 3x; + 5xp,
x1=0 subject to
(0, 9) X1 = 4
20 =12
3x, + 2x, = 18 3x, + 2x, < 18
and
| X1 = 0., X2 =0
(4, 6)
(0, 6) & ® 2%, =12
I X1 = 4
| Feasible
region
FIGURE 4.1 =
Constraint boundaries and X% =0
corner-point solutions for the  (0,0) & o
Wyndor Glass Co. problem. 4,0) (6,0) 1

(¥ &fE): Solution for the original decision variables
augmented by the slack variables
Example: augmenting solution (2,6) yields the augmented solution
(2,6,2,0,0)
(BEZf#): Augmented corner-point solution
Example: augmenting corner-point solution (4,6) yields basic
solution(4,6,0,0,-6)
(EZR]17#%): Augmented CPF solution

Example: the CPF (0,6) is equivalent to the BF solution (0,6,4,0,6)

: CPF (and BF) solution can be either feasible or BT
178 (BF solution) 2GR CPF fZ,

The only difference between basic
solutions and corner-point solutions (or betweenBF solutions and CPF



solutions) is whether the values of the slack variables are included
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This fact gives us 2 degrees of freedom in
solving the system, since any two variables can bechosen to be set equal to
any arbitrary value in order to solve the three equations in terms ofthe
remaining three variables
show annotation

A basic solution has the following properties:

show annotation
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Negative RHS and “>" Constraints

* Negative RHS: a,x, ta,,x, +... + a,x,<-b,
=>» Multiply both sizes by —1: —a,x; —a;2%, — ... —ay,%x, = b,

* Constraints with “>”: q,x, +a,,x,+ ... +ta,x,> b,
= Add bhoth surplus and artificial variables:

1) Surplus : a;x; +apx, + ... ta;,x,—x,= b,

where x; > 0 (surplus variable)

2) Artificial: a;x; +a;x, + ... + a,,x, —x, + x,= b, where x, > 0 (artificial variable)
Add -M*x, to objective function

* The main purpose of adding artificial variables is to get a starting point for Simplex.

* Minimization: Minimize Z = c¢;x, + c,x, + ... + ¢,x,

=> Multiply objective by “~1”: Maximize —Z = —cx; — CpX; — ... — C,X,
Big M method
. Basic Coefficient of Right Solution
lteration . Eq. . .
variables Z x1 x2 x3 x4 X5 X6 Side optimal?
z o) 1 5M+3  -4M+2 8M+4 0 M 0 -180M
0 x4 1) 0 2 1 3 1 0 0 60 No
X6 T3) 0 3 3 5 0 El 1 120
z T0) 4 1/3(M+1) -1/3(4M-2) 0 1/3(8M-4) M 0 -20M-80
1 X3 1) 0 2/3 1/3 1 1/3 0 0 20 No
X6 3) 0 -1/3 4/3 0 -5/3 -1 1 20
z (0 -1 1/2 0 0 M-1/2 -1/2 M-1/2  [-90
2 x3 M) 0 3/4 0 1 3/4 1/4 -1/4 15 Yes
x2 3) 0 -1/4 1 0 -5/4 -3/4 3/4 15

Two phase method



Back to Radiation Therapy Example: Two-

Phase Method

* Two-phase method

* Phase 1: minimize Z = X,+ X4 (until X, = 0, X; = 0)
* Obtain a BF solution for the real problem. This solution is used as the initial BF solution

to real problem in phase 2.

* Phase 2: minimize Z = 0.4x; + 0.5x, (withx, = 0, x5 = 0)

Phase 1 Probiem (Radiation Therapy Example):

Phase 2 Problem (Radiation Therapy Example):

Minimize

Minimize ~ Z=73,+ ¥, Z=04x, + 0.5x,,
subject to subject to
03x, + 0.1xs + x5 =27 0.3x, + “-1-": +x; =27
0.5x; + 0.5x; + s =6 0.5x, + 0.5x; =6
0.6x; + 0.4x — x5 +T =6 0.6x; + 0.4x —x5=6
and and
=0, x=0 n=0 I=0 s =0 X =10 1=0, w»=0, x=0 =0
Phase 1
R Basic E Coefficient of Right Solution
variables ¥ z x1 x2 x3 x4 x5 x6 Side optimal?
z o) -1 5 -4 -8 0 1 0 -180
0 x4 () 0 2 1 3 1 0 0 60 No
K -
6 "3) 0 3 3 5 0 1 1 120
z (0) A 1/3 -4/3 0 8/3 1 0 20
1 x3 (& 0 2/3 1/3 1 1/3 0 0 20 No
X6 "3) 0 -1/3 4/3 0 5/3 .1 1 20
z () <1 0 0 0 1 0 1 0
2 x3 1) 0 3/4 0 1 3/4 1/4 -1/4 15 Yes
x2 3) 0 -1/4 1 0 -5/4 -3/4 3/4 15
Phase 2
z o) of 3 2 4 0 0
3 x3 T1) 0 3/4 0 1 1/4 15 No
x2 "3) 0 -1/4 1 0 -3/4 15
z (0) -1 1/2 0 0 1/2 90
4 X3 (& 0 3/4 0 1 1/4 15 Yes
x - -
2 "3) 0 1/4 1 0 3/4 15

5. Theory of the Simple Method
5.1 Foundations of the Simplex Method

A corner-point feasible (CPF) solution is a

feasible solution that does not lieon any line segment1 connecting two other



feasible solutio
show annotation

Properties of CPF Solutions

show annotation
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5.2 The Simplex Method in Matrix Form

Using matrices, the standard form can be given by:
max Z = cX
subjective to

Az <b and x>0,



Matrix Form of the Current Set Functions

b

» The original set of equations are P o #1% 1 F
0 A1 A [
_ I,

»

The algebraic operation performed by simplex method is captured in the matrix form.

Z

Xn

1 B o :
_L' B! LJ_

Use above matrix that premultiplies the original right-hand side to premultiply the original left-
hand side.

I egB7' 1 —c 0] _[1 eB'A—c B!
L: B! ‘11 Al ||r B™'A B

The set of equation after any iteration is

-1 =1 Z
I oB'A —c B s
0 B'A B || ¥
Xy

csB™'b
B~'b

: Introduce slack variable to obtain initial basic variable. This
yields initial x B, ¢ B ,B..

Step 1: Determine the entering basic variable
- Check coefficient of nonbasic variable in Eq(0)
- Select negative coefficient having the largest value
Step 2. Determine the leaving basic variable
- Use B7'A, x5 = B~'b and minimal ratio
Step 3. Determine the new BF solution
- Update B, z, cp
test: The solution is optimal iff positive cg B-'A — cand ¢gB™!
are positive.



E.Q.

Wyndor Glass Co. Example

* The input parameters are

1.0 1 &Q 4

c=[35]. A I]l= |:|J 2 0 1 Ir:|. |,=[]_1_:|

"o " " 32001 18
 Initialization

F"j 4 1 0 0
xp=| %= 12|, sp=[0:0,0, B=/0 1 o =p}
LJ\-—. 18 0 o0 1

* Optimality test

esB7'A — ¢ =1[0,0] = [3, 5] = [-3, —=5]

not optimal, above is the coefficient of nonbasic varialbes x; and x,

These appli-cations are particularly important only
when we are dealing with the final simplex tableauafter the optimal solution
has been obtained
show annotation

Let B be the basis matrix for the optimal solution

« §* = B~ = coefficient of the slack variables in rows 1 to m

« A* =B~ 1A = coefficient of the original variables in rows 1 to m

 y* =cgB ™! = coefficient of the slack variables in rows 0

« z*=cgB7 1A, so z*—c is coefficient of the original variables in rows 0
* Z*=cgB~!b = optimal value of the objective function

« b*=B~b = optimal right-hand sides of rows 1 to m

 Suppose initial tableau t and T are given, and just y* and S are given.
How to use this information to calculate the final tableau?
*t=[—¢ 0,0, T=[A1LDb]

% B 2RSBARSER B MRITIORIER, ©



S§* = B! RRE—ATE m TH

HIREX

A = BARTE— TR m T 50 RS
v = cpB iR O 77 R
2*=cgB 1A, FilA2z* —c =0 RZE 0 1TH HIREX
7* = cpB b RREFREHBIE
b — Blb RRE—TE m TRIERITE
5.4 The Revised Simplex Method
ooty [(Bab)y B, it
R ENN fi=r
1 01 0O 4
c=[3,5, [ALl=]020 10|, b=]12
320 01 18
Wyndor Glass Co. Example

e Jteration 1

dya

oz 0
' L e { %]
daz “

S5 =

dan

* [teration 2

= i
=y 1
’ At
t.]'_.ll 3 |
n = _d'\rl — 0 B_l |
az

| a5

£

D —3
| 0
0 3

BA-1} _{now}

I 0
0 1
0 0

| 8]
0 '
0o -1

E

BA-1} _{old}



6. Duality theory

This discovery re-vealed that every linear
programming problem has associated with it another linear pro-gramming
problem called the dual.
show annotation

The relationships between the dual problem
and theoriginal problem (called the primal) prove to be extremely useful in a
variety of ways
show annotation

6.1 The Essence of Duality Theory

Given our standard form for the primal
problem at the left (perhaps after conversion fromanother form), its dual
problem has the form shown to the right.
show annotation

Primal Problem Dual Problem

Maximize Z= i CjX;, Minimize W= i b;yi,
j=1 i=1
subject to subject to
i a;x; < b;, fori=1,2,..., m i a;yi = cj, forj= 1, 2550 5 n
j=1 i=1
and and
X210, for = b2y e 3 B yi=0 fori= 1,2, . 5 m.

[RIEIBF] AR A HRANE, WEEBARIMEAE, USRI FNE, WK
BARERERIS 2L

Summary of Primal-Dual Relationships
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Summary of Primal-Dual Relationships

fzisa for the primal problem and
y is a feasible solution for the dual problem, then cz < yb. One application
of the dual is to provide a bound for the optimal value.

(If ¥ is an for the primal problem
andy =y™*b
XA, SRR T AR RME, HEBRITHILERMEN, 288
BER T HERMBENRE (BERREEE) , WE cc=yd

: At each iteration, it simultaneously
identifies a x for the primal problem and a complementary
solution (B #M#&) y for the dual problem, and cxz = yb

: At the final iteration, it

simultaneously identifies a x* for the primal problem and a
complementary optimal solution (&1l B #Mi#) y for the dual problem, and
cx* = y*b

NFHEE—ImE A @B, el (8RY
—IRADTERIFRAY o
: The following are the only possible relationships between
the primal and dual problems.
MR—P BB E TR LRNETREN (FERME) , Bas—
MelAth S/ ETREMA SR ERREL, If one problem has feasible
solutions and a bounded objective function (and so has an optimal
solution), then so does the other problem, so both the weak and
strong duality properties are applicable.
MR- EE1THE, ESEMRHBELAN (TRNE) , s
B— @2 B rI1TE, If one problem has feasible solutions and an
unbounded objective function (and so no optimal solution), then the
other problem has no feasible solutions.
MR—PEIFZERIITHR, BAS—TRIANE LB ITRE, BRI
Bz, B2 BREF5R, If one problem has no feasible solutions, then



the other problem has either no feasible solutions or an unbounded
objective function

* Duality theorem identifies the only possible relationships between the
primal and dual problems
* If one 1s feasible and bounded, the other must be feasible and bounded.
* If one is feasible but unbounded, the other must be infeasible.
e If one is infeasible, the other must be infeasible or unbounded.

: Dual :
- Infeasible =~ Optimal _Unbounded‘

= | Infeasible ‘ v ' x v
g . Optimal | x v x
a - Unbounded ‘ 4 x x
: Feasible refers to feasible zone, refers to objective function

6.3 Prime-Dual Relationship

Complementary slackness property

* Complementary slackness property

 The variables in the primal basic solution and the complementary dual basic
solution satisfy the complementary slackness relation.

TABLE 6.8 Complementary slackness
relationship for complementary
basic solutions

Primal
Variable

Assoclated
Dual Variable

Basic Nonbasic (m variables)
Nonbasic Basic (n variables)

* For each pair of associated variable, if one of them has slack in the
nonnegativity constrain (a basic variable > 0), then the other one must have no
slack (a nonbasic variable = 0).

Complementary slackness property: Given
the association between variablesin Table 6.7, the variables in the primal
basic solution and the complementarydual basic solution satisfy the
complementary slackness relationship shown inTable 6.8. Furthermore, this




relationship is a symmetric one, so that these twobasic solutions are
complementary to each other.
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6.4 Adapting to Other Primal Forms
Sensible-odd-bizarre (K& . N . |DBIFE)

The sensible-odd-bizarre method, or SOB
method for short, saysthat the form of a functional constraint or the
constraint on a variable in the dual problemshould be sensible, odd, or
bizarre
show annotation

TABLE 6.14 Corresponding primal-dual forms

Primal Problem Dual Problem
Label (or Dual Problem) (or Primal Problem)
Maximize Z (or W) Minimize W (or 2)
Constraint 1: Variable y; (or x):
Sensible = form < > y;=0
Odd = form ¢ > Unconstrained
Bizarre = form ¢ > yi=0
Variable x; (or y)): Constraint j:
Sensible x=0 ¢ » = form
Odd Unconstrained ¢ > = form
Bizarre xi =0 ¢ > = form
: < e
. VA BE (R s ) S0 A1 16 L ( 2 D 1 D)
' e max Z(FHF W) min W(EL&E 2)
FiANARFR R oy (REAE )
KA (S) =M R y: =0
N 4F (O) —WpR T
[ A 51 (B) =B R <0
|l AR x (RF R ) ®BiAARTE
i KESF(S) 2220 | SRR
/N4 CO) T HE =T R
! 12 4~ 51 (B) 2}<0 <E R
o = ” Sy T i e e P o Rt L L L 2 i e



6.7 Sensitive Analysis
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13 nonlinear Programming

Types of Nonliear Programming Problems



https://www.bilibili.com/video/BV1bS4y1j7sC/?spm_id_from=333.788.recommend_more_video.0&vd_source=ed04dacb9e3f8845a9f0fa7b8130e4f1

Unconstrained optimization
Minimize f(x) for all values of z = (x1, 22, - -, x,)
No constraints
Linearly constrained optimization
All constraint functions are linear
Objective function is nonlinear
Quadratic programming
Linear constraints

Objective function is quadratic and convex

Separable programming
Each term involves just a single variable
The function is separable into a sum of functions of individual variables

)= > 1

Nonconvex programming

Functions do not satisfy assumptions of convex programming

No algorithm will find an optimal solution for all such problems

Some algorithms explore various parts of the feasible region and may find a
global maximum

f(z) and g;(z) are convex functions
Geometric programming
Fractional programming

: A function f: R™ — R is convex if dom f is a convex set and if
forall z,y € domfand 8 with 0 < 6 < 1, we have:

f0z + (1 —0)y <0f(z) + (1 —0)f(y)

BRER 9 M1 R £, D — Bt S EUART-0; B ERC9 T R &R, U — B S EUNTF.



First-order condition

Assume f is differentiable (i.e., its gradient V f exists at each
point in domf, which is open). Then f is convex if and only if
domf is convex and

f) > f@)+ V@) (y-=)

holds for all x,y € domf.

Second-order condition

Assume f is twice differentiable, that is, its Hessian or second
derivative V?f exists at each point in domf, which is open.
Then f is convex if and only if domf is convex and its Hessian
is positive semidefinite.

Example of convex function

>

>

>

[N

ar

Exponential. e** is convex on R, for any a € R.
Powers. x® is convex on R+ when a > 1 or a < 0, and
concave for 0 < a < 1.

Powers of absolute value. |z

P for p > 1, is convex on R.

Logarithm. log x is concave on R .



Example of convex function

» Quadratic-over-linear function. The function
f(z,y) = 22 /y, with
domf = R x Ry = {(z,y) € R?|ly > 0}, is convex.

» Log-sum-exp. The function f(x) = log(e*' + €*2) is convex
on R?.

f=wifi+ - +wnfn

If f1 and f, are convex functions then their pointwise maximum f, defined
by f(xz) = max{fi(x), f2(z)}, is also convex

» Composition.
Assume h:R—>R,g: R" > R,and f=hog: R" = R,
defined by

f(x) = h(g(x)), domf = {r € domg | g(x) € domh}.

» [ is convex if h is convex and nondecreasing., and ¢ is
CONvex,

» [ is convex if h is convex and nonincreasing, and g is
colcave,

» [ is concave if h is concave and nondecreasing, and ¢ is
concave,

» [ is concave if h is concave and nonincreasing, and ¢ is
convex.



CONVEX OR CONCAVE FUNCTIONS OF
SEVERAL VARIABLES

show annotation
KKT condition
Example @(T conditions ab
Maximize fix) = In(x; + 1) + 23, 1I(j=1). : ! 1 — 5= 1)
X T
subject to ' ( 1 N '
2, +x, =3 A= # Tlaal - HHI) =
and 1[_]:22]. 1 .—ll| = (.
2=2) xa:(01l —u;))=0.

l\'] iy — 3=0.

1 (2x; +x2 — 3) = 0.
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E.Q.
Ex. 5
Consider the following convex programming problem:
Maximize f(z) = 24z, — 23 + 10z — =3
subject to
L1 S 10
T2 < 15

and
r; >0, x>0

Use the KKT conditions for this problem to derive an optimal solution.



Solution for ba

Let

F(z) = f(z) — ag(z1) — Bg(z2)
= 24z, — x3 4+ 1029 — 23 — a(z; — 10) — B(zy — 15)

where a, 8 >> 0. According to the KKT theorem, for the problem, we can get the
following conditions:

OF (x)
=24 —-2z1 —a<0
01
OF(x)
—10—2z,— <0
8332
OF
T1 am(if) =x1(24 — 2z, — ) =
OF (x
i) 02152) = 213‘2(].0 — 2:132 — ﬂ) =0
a(z; —10) =0
B(xzy —15) =0
z1—10<0
ro — 15 <0

Then, we can solve the above system, get the following result:

1 =10
CE2:5
a=4
B=0

Thus, the optimal maximum results is f(z) = 24 x 10 — 10?2 + 10 x 5 — 5% = 165



